This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339888 #11 Apr 17 2021 03:43:04 %S A339888 1,1,3,5,13,23,55,104,236,470,1039,2140,4712,9962,21961,47484,105464, %T A339888 232324,521338,1167825,2651453,6031136,13863054,31987058,74448415, %U A339888 174109134,410265423,971839195,2317827540,5558092098,13412360692,32542049038,79424450486 %N A339888 Number of non-isomorphic multiset partitions of weight n into singletons or strict pairs. %H A339888 Andrew Howroyd, <a href="/A339888/b339888.txt">Table of n, a(n) for n = 0..50</a> %e A339888 Non-isomorphic representatives of the a(1) = 1 through a(4) = 13 multiset partitions: %e A339888 {{1}} {{1,2}} {{1},{2,3}} {{1,2},{1,2}} %e A339888 {{1},{1}} {{2},{1,2}} {{1,2},{3,4}} %e A339888 {{1},{2}} {{1},{1},{1}} {{1,3},{2,3}} %e A339888 {{1},{2},{2}} {{1},{1},{2,3}} %e A339888 {{1},{2},{3}} {{1},{2},{1,2}} %e A339888 {{1},{2},{3,4}} %e A339888 {{1},{3},{2,3}} %e A339888 {{2},{2},{1,2}} %e A339888 {{1},{1},{1},{1}} %e A339888 {{1},{1},{2},{2}} %e A339888 {{1},{2},{2},{2}} %e A339888 {{1},{2},{3},{3}} %e A339888 {{1},{2},{3},{4}} %o A339888 (PARI) %o A339888 EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} %o A339888 permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} %o A339888 gs(v) = {sum(i=2, #v, sum(j=1, i-1, my(g=gcd(v[i], v[j])); g*x^(2*v[i]*v[j]/g))) + sum(i=1, #v, my(r=v[i]); (1 + (1+r)%2)*x^r + ((r-1)\2)*x^(2*r))} %o A339888 a(n)={if(n==0, 1, my(s=0); forpart(p=n, s+=permcount(p)*EulerT(Vec(gs(p) + O(x*x^n), -n))[n]); s/n!)} \\ _Andrew Howroyd_, Apr 16 2021 %Y A339888 The version for set partitions is A000085, with ordered version A080599. %Y A339888 The case of integer partitions is 1 + A004526(n), ranked by A003586. %Y A339888 Non-isomorphic multiset partitions are counted by A007716. %Y A339888 The case without singletons is A007717. %Y A339888 The version allowing non-strict pairs (x,x) is A320663. %Y A339888 A001190 counts rooted trees with out-degrees <= 2, ranked by A292050. %Y A339888 A339742 counts factorizations into distinct primes or squarefree semiprimes. %Y A339888 A339887 counts factorizations into primes or squarefree semiprimes. %Y A339888 Cf. A001055, A007718, A316983, A319616, A320656, A321729, A339740, A339741. %K A339888 nonn %O A339888 0,3 %A A339888 _Gus Wiseman_, Jan 09 2021 %E A339888 Terms a(11) and beyond from _Andrew Howroyd_, Apr 16 2021