This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339895 #10 Dec 21 2020 23:03:57 %S A339895 0,0,0,0,0,0,0,1,1,0,0,1,0,0,1,1,0,1,0,1,1,0,0,1,1,0,2,1,0,1,0,2,1,0, %T A339895 1,2,0,0,1,1,0,1,0,1,2,0,0,2,2,2,1,1,0,3,1,1,1,0,0,2,0,0,2,2,1,1,0,1, %U A339895 1,2,0,3,0,0,3,1,2,1,0,2,3,0,0,2,1,0,1,1,0,3,2,1,1,0,1,2,0,3,2,2,0,1,0,1,3 %N A339895 a(n) = A339894(n) - A061395(n). %H A339895 Antti Karttunen, <a href="/A339895/b339895.txt">Table of n, a(n) for n = 1..65537</a> %H A339895 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %F A339895 a(n) = A339894(n) - A061395(n). %F A339895 a(n) = A334201(n) - A339896(n). %F A339895 a(n) = A339893(A122111(n)). %o A339895 (PARI) %o A339895 A000523(n) = if( n<1, 0, #binary(n) - 1); \\ From A000523 %o A339895 A122111(n) = if(1==n,n,my(f=factor(n), es=Vecrev(f[,2]),is=concat(apply(primepi,Vecrev(f[,1])),[0]),pri=0,m=1); for(i=1, #es, pri += es[i]; m *= prime(pri)^(is[i]-is[1+i])); (m)); %o A339895 A339894(n) = A000523(A122111(n)); %o A339895 A061395(n) = if(1==n, 0, primepi(vecmax(factor(n)[, 1]))); %o A339895 A339895(n) = (A339894(n)-A061395(n)); %Y A339895 Cf. A000523, A061395, A122111, A334201, A339893, A339894, A339896. %Y A339895 Cf. A339897 (first occurrence of each n). %K A339895 nonn %O A339895 1,27 %A A339895 _Antti Karttunen_, Dec 21 2020