A339942 Triangle read by rows: T(n,k) is the number of permutations of the cyclic group Z/nZ whose longest embedded arithmetic progression has length k.
1, 0, 2, 0, 0, 6, 0, 8, 8, 8, 0, 0, 40, 60, 20, 0, 0, 468, 192, 48, 12, 0, 0, 462, 3150, 1176, 210, 42, 0, 128, 4192, 27872, 6592, 1312, 192, 32, 0, 0, 57402, 182790, 99630, 19656, 2970, 378, 54, 0, 0, 67440, 1795320, 1594640, 146200, 22000, 2840, 320, 40, 0, 0, 61050, 17433130, 17373620, 4289340, 662860, 85910, 9790, 990, 110
Offset: 1
Examples
Triangle T(n,k) begins: n/k 1 2 3 4 5 6 7 8 9 10 11 1 1 2 0 2 3 0 0 6 4 0 8 8 8 5 0 0 40 60 20 6 0 0 468 192 48 12 7 0 0 462 3150 1176 210 42 8 0 128 4192 27872 6592 1312 192 32 9 0 0 57402 182790 99630 19656 2970 378 54 10 0 0 67440 1795320 1594640 146200 22000 2840 320 40 11 0 0 61050 17433130 17373620 4289340 662860 85910 9790 990 110
Links
- M. K. Goh and R. Y. Zhao, Arithmetic subsequences in a random ordering of an additive set, arXiv:2012.12339 [math.CO], 2020.
Formula
T(n,n) = n*A000010(n).
Comments