cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339945 Numbers y such that sqrt(6*y^2+10)-3 is prime.

This page as a plain text file.
%I A339945 #10 Dec 24 2020 02:40:01
%S A339945 3,13,31,129,29180479,121378881,110778874246369293,263631110418336671,
%T A339945 95129083120198558843838970225921,
%U A339945 213007829848951141529011991896053267187
%N A339945 Numbers y such that sqrt(6*y^2+10)-3 is prime.
%C A339945 sqrt(p + (p^2-1)/6) for p in A339935.
%C A339945 Primes in this sequence include 3, 13, 31.  Are there any others?
%H A339945 Robert Israel, <a href="/A339945/b339945.txt">Table of n, a(n) for n = 1..15</a>
%e A339945 a(3) = 31 is a term because sqrt(6*31^2+10)-3 = 73 is prime.
%p A339945 g:= gfun:-rectoproc({a(i+4)-10*a(i+2)+a(i)=0, a(0)=1, a(1)=3, a(2)=13, a(3)= 31},a(i),remember):
%p A339945 select(y -> isprime(sqrt(6*y^2+10)-3), map(g, [$1..100]));
%Y A339945 Cf. A339935.
%K A339945 nonn
%O A339945 1,1
%A A339945 _J. M. Bergot_ and _Robert Israel_, Dec 23 2020