cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A341201 Number of unitary rings with additive group (Z/nZ)^3.

Original entry on oeis.org

1, 7, 7, 27, 7, 49, 7
Offset: 1

Views

Author

Keywords

Crossrefs

A341202 Number of unitary commutative rings with additive group (Z/nZ)^3.

Original entry on oeis.org

1, 6, 6, 16, 6, 36, 6
Offset: 1

Views

Author

Keywords

Crossrefs

A341547 Number of rings with additive group (Z/nZ)^2.

Original entry on oeis.org

1, 8, 8, 66, 8, 64, 8, 301, 175, 64, 8, 528, 8, 64, 64
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Clear[phi]; phi[1] = 1; phi[p_,1] := 8; phi[2,2] = 66;
    phi[2,3] = 301; phi[3,2] = 175; phi[n_]:= Module[{aux = FactorInteger[n]}, Product[phi[aux[[i, 1]], aux[[i, 2]]], {i, Length[aux]}]];

A341548 Number of commutative rings with additive group (Z/nZ)^2.

Original entry on oeis.org

1, 6, 6, 28, 6, 36, 6, 79, 35, 36, 6, 168, 6, 36, 36
Offset: 1

Views

Author

Keywords

Comments

It appears that a(16)=230, but it is preferable to wait for someone to confirm it.

Crossrefs

Programs

  • Mathematica
    Clear[phi]; phi[p_, 1] := 6;  phi[2,2] = 28; phi[2,3] = 79;  phi[3,2] = 35; phi[n_]:= Module[{aux = FactorInteger[n]}, Product[phi[aux[[i, 1]], aux[[i, 2]]], {i, Length[aux]}]];

A342305 Number of nonisomorphic rings Z/nZ/(x^2 - A, y^2 - B, y*x - a - b*x - c*y - d*x*y) of order n^4.

Original entry on oeis.org

1, 3, 13, 97, 14, 39, 15, 624, 67, 42, 17, 1261, 18, 45, 182
Offset: 1

Views

Author

Keywords

Examples

			For n=2:
  Z/2Z<x,y>/(x^2, y^2, y*x),
  Z/2Z<x,y>/(x^2, y^2, y*x + x*y),
  Z/2Z<x,y>/(x^2, y^2, y*x + 1 + x*y),
so a(2)=3.
For n=3, a complete family of non-isomorphic cases {A,B,a,b,c,d} are:
  {0,0,0,0,0,0}, {0,0,0,0,0,1}, {0,0,0,0,0,2}, {0,0,1,0,0,2},
  {0,1,0,0,0,1}, {0,1,0,0,0,2}, {0,1,0,1,0,0}, {0,2,0,0,0,1}, {0,2,0,0,0,2},
  {1,0,0,0,1,0}, {1,1,0,0,0,1}, {1,1,1,1,2,0}, {1,2,0,0,0,1},
so a(3)=13.
		

Crossrefs

Programs

  • Mathematica
    a[1]=1; a[p_,1]:= (12 + (p - 1)/2); a[2, 1]=3; a[2,2]= 97; a[2,3]=624; a[3, 2]=67; a[n_]:=Module[{aux=FactorInteger[n]},Product[a[aux[[i,1]], aux[[i,2]]], {i, Length[aux]}]]; Table[a[n], {n, 1, 15}]
Showing 1-5 of 5 results.