This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339960 #17 Dec 26 2020 02:42:07 %S A339960 1,1676,183521,20842802,3061629439,418172485806,56203566442908, %T A339960 7621726574570613,1033232532941136255,139934009951521872490, %U A339960 18955155770535463735959,2567688102114635009977537,347811042296785583958285788,47113523803568895604053871759,6381875340326645360658645942215 %N A339960 Number of Hamiltonian circuits within parallelograms of size 8 X n on the triangular lattice. %H A339960 Seiichi Manyama, <a href="/A339960/b339960.txt">Table of n, a(n) for n = 2..100</a> %H A339960 Olga Bodroža-Pantić, Harris Kwong and Milan Pantić, <a href="https://doi.org/10.1016/j.dam.2015.07.028">Some new characterizations of Hamiltonian cycles in triangular grid graphs</a>, Discrete Appl. Math. 201 (2016) 1-13. (a(n) is equal to h7(n-1) defined by this paper) %H A339960 M. Peto, <a href="https://doi.org/10.31274/rtd-180813-17105">Studies of protein designability using reduced models</a>, Thesis, 2007. %o A339960 (Python) %o A339960 # Using graphillion %o A339960 from graphillion import GraphSet %o A339960 def make_T_nk(n, k): %o A339960 grids = [] %o A339960 for i in range(1, k + 1): %o A339960 for j in range(1, n): %o A339960 grids.append((i + (j - 1) * k, i + j * k)) %o A339960 if i < k: %o A339960 grids.append((i + (j - 1) * k, i + j * k + 1)) %o A339960 for i in range(1, k * n, k): %o A339960 for j in range(1, k): %o A339960 grids.append((i + j - 1, i + j)) %o A339960 return grids %o A339960 def A339849(n, k): %o A339960 universe = make_T_nk(n, k) %o A339960 GraphSet.set_universe(universe) %o A339960 cycles = GraphSet.cycles(is_hamilton=True) %o A339960 return cycles.len() %o A339960 def A339960(n): %o A339960 return A339849(8, n) %o A339960 print([A339960(n) for n in range(2, 8)]) %Y A339960 Row 8 of A339849. %Y A339960 Cf. A145418. %K A339960 nonn %O A339960 2,2 %A A339960 _Seiichi Manyama_, Dec 25 2020