A339980 Coreful Zumkeller numbers (A339979) whose set of coreful divisors can be partitioned into two disjoint sets of equal sum in a single way.
36, 72, 180, 200, 252, 360, 392, 396, 468, 504, 600, 612, 684, 784, 792, 828, 936, 1044, 1116, 1176, 1224, 1260, 1332, 1368, 1400, 1476, 1548, 1656, 1692, 1908, 1936, 1960, 1980, 2088, 2124, 2196, 2200, 2232, 2340, 2352, 2412, 2520, 2556, 2600, 2628, 2664, 2704
Offset: 1
Keywords
Examples
36 is a term since there is only one partition of its set of coreful divisors, {6, 12, 18, 36}, into 2 disjoint sets whose sums are equal: 6 + 12 + 18 = 36.
Crossrefs
Programs
-
Mathematica
corZumQ[n_] := Module[{r = Times @@ FactorInteger[n][[;; , 1]], d, sum, x}, d = r*Divisors[n/r]; (sum = Plus @@ d) >= 2*n && EvenQ[sum] && CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] == 2]; Select[Range[10000], corZumQ]
Comments