A339981 Primitive coreful Zumkeller numbers: coreful Zumkeller numbers (A339979) having no coreful Zumkeller aliquot divisor.
36, 200, 392, 1936, 2704, 4900, 9248, 11552, 16928, 26912, 30752, 60500, 84500, 87616, 99225, 107584, 118336, 141376, 163592, 165375, 179776, 222784, 231525, 238144, 349448, 574592, 645248, 682112, 798848, 881792, 1013888, 1204352, 1225125, 1305728, 1357952
Offset: 1
Keywords
Examples
a(1) = 36 since it is the least coreful Zumkeller number. The next coreful Zumkeller numbers, 72, 144 and 180, are not terms since they are multiples of 36.
Programs
-
Mathematica
corZumQ[n_] := corZumQ[n] = Module[{r = Times @@ FactorInteger[n][[;; , 1]], d, sum, x}, d = r*Divisors[n/r]; (sum = Plus @@ d) >= 2*n && EvenQ[sum] && CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] > 0]; primczQ[n_] := corZumQ[n] && NoneTrue[Most @ Divisors[n], corZumQ]; Select[Range[10^6], primczQ]
Comments