cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339987 The number of labeled graphs on 2n vertices that share the same degree sequence as any unrooted binary tree on 2n vertices.

This page as a plain text file.
%I A339987 #38 Mar 07 2023 03:41:16
%S A339987 1,4,90,8400,1426950,366153480,134292027870,67095690261600,
%T A339987 43893900947947050,36441011093916429000,37446160423265535041100,
%U A339987 46669357647008722700474400,69367722399061403579194432500,121238024532751529573125745790000,246171692450596203263023527657431250
%N A339987 The number of labeled graphs on 2n vertices that share the same degree sequence as any unrooted binary tree on 2n vertices.
%C A339987 An unrooted binary tree is a tree in which all non-leaf vertices have degree 3. With 2n vertices there will be n+1 leaves and n-1 internal vertices.
%H A339987 Andrew Howroyd, <a href="/A339987/b339987.txt">Table of n, a(n) for n = 1..100</a> (terms 1..40 from Atabey Kaygun)
%H A339987 Atabey Kaygun, <a href="https://kaygun.tumblr.com/post/637867244800573440/counting-graphs-with-a-prescribed-degree-sequence">Counting Graphs with a Prescribed Degree Sequence</a>.
%H A339987 Atabey Kaygun, <a href="/A339987/a339987_2.lisp.txt">Common LISP program that generates the sequence</a>.
%H A339987 M. Kauers and C. Koutschan, <a href="https://arxiv.org/abs/2303.02793">Some D-finite and some possibly D-finite sequences in the OEIS</a>, arXiv:2303.02793 [cs.SC], 2023.
%F A339987 Conjectured recurrence: 32*(1 + n)*(2 + n)*(1 + 2*n)*(3 + 2*n)*(5 + 2*n)*(7 + 2*n)*(9 + 2*n)*(11589 + 10844*n + 3300*n^2 + 328*n^3)*a(n) - 8*(2 + n)*(3 + 2*n)*(5 + 2*n)*(7 + 2*n)*(9 + 2*n)*(148119 + 232328*n + 129460*n^2 + 30664*n^3 + 2624*n^4)*a(n+1) - 16*(3 + n)*(5 + 2*n)*(7 + 2*n)*(9 + 2*n)*(341634 + 712135*n + 569267*n^2 + 219308*n^3 + 40852*n^4 + 2952*n^5)*a(n+2) + 8*(4 + n)*(7 + 2*n)*(9 + 2*n)*(527520 + 1057879*n + 818282*n^2 + 306380*n^3 + 55672*n^4 + 3936*n^5)*a(n+3) - 2*(5 + n)*(9 + 2*n)*(601452 + 1117119*n + 786236*n^2 + 264028*n^3 + 42472*n^4 + 2624*n^5)*a(n+4) + 3*(4 + n)*(6 + n)*(3717 + 5228*n + 2316*n^2 + 328*n^3)*a(n+5) = 0. - _Manuel Kauers_ and _Christoph Koutschan_, Mar 01 2023
%F A339987 Conjecture: a(n) ~ 2^(5*n - 1/2) * n^(2*n - 3/2) / (sqrt(Pi) * 3^(n-1) * exp(2*n + 21/16)), based on the recurrence by _Manuel Kauers_ and _Christoph Koutschan_. - _Vaclav Kotesovec_, Mar 07 2023
%o A339987 (PARI) \\ See Links in A295193 for GraphsByDegreeSeq.
%o A339987 a(n) = {if(n==1, 1, my(d=2*n-4, M=GraphsByDegreeSeq(n-1, 3, (p,r)-> subst(deriv(p),x,1) >= d-6*r), z=(2*n)!/(n-1)!); sum(i=1, matsize(M)[1], my(p=M[i,1], r=(subst(deriv(p), x, 1)-d)/2); M[i,2]*z / (2^polcoef(p,1) * 6^polcoef(p,0) * 2^r * r!)))} \\ _Andrew Howroyd_, Mar 01 2023
%Y A339987 Cf. A001147, A001190, A002829.
%K A339987 nonn
%O A339987 1,2
%A A339987 _Atabey Kaygun_, Dec 25 2020