cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340017 Products of squarefree semiprimes that are not products of distinct squarefree semiprimes.

This page as a plain text file.
%I A340017 #13 Dec 30 2020 19:57:48
%S A340017 36,100,196,216,225,360,441,484,504,540,600,676,756,792,936,1000,1089,
%T A340017 1156,1176,1188,1224,1225,1296,1350,1368,1400,1404,1444,1500,1521,
%U A340017 1656,1836,1960,2052,2088,2116,2160,2200,2232,2250,2484,2600,2601,2646,2664,2744
%N A340017 Products of squarefree semiprimes that are not products of distinct squarefree semiprimes.
%C A340017 Of course, every number is a product of squarefree numbers (A050320).
%C A340017 A squarefree semiprime (A006881) is a product of any two distinct prime numbers.
%C A340017 All terms have even Omega (A001222, A028260).
%H A340017 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DegreeSequence.html">Degree Sequence.</a>
%H A340017 Gus Wiseman, <a href="/A339741/a339741_1.txt">Counting and ranking factorizations, factorability, and vertex-degree partitions for groupings into pairs.</a>
%F A340017 Equals A320894 /\ A320911.
%F A340017 Numbers n such that A320656(n) > 0 but A339661(n) = 0.
%e A340017 The sequence of terms together with their prime indices begins:
%e A340017       36: {1,1,2,2}        1000: {1,1,1,3,3,3}
%e A340017      100: {1,1,3,3}        1089: {2,2,5,5}
%e A340017      196: {1,1,4,4}        1156: {1,1,7,7}
%e A340017      216: {1,1,1,2,2,2}    1176: {1,1,1,2,4,4}
%e A340017      225: {2,2,3,3}        1188: {1,1,2,2,2,5}
%e A340017      360: {1,1,1,2,2,3}    1224: {1,1,1,2,2,7}
%e A340017      441: {2,2,4,4}        1225: {3,3,4,4}
%e A340017      484: {1,1,5,5}        1296: {1,1,1,1,2,2,2,2}
%e A340017      504: {1,1,1,2,2,4}    1350: {1,2,2,2,3,3}
%e A340017      540: {1,1,2,2,2,3}    1368: {1,1,1,2,2,8}
%e A340017      600: {1,1,1,2,3,3}    1400: {1,1,1,3,3,4}
%e A340017      676: {1,1,6,6}        1404: {1,1,2,2,2,6}
%e A340017      756: {1,1,2,2,2,4}    1444: {1,1,8,8}
%e A340017      792: {1,1,1,2,2,5}    1500: {1,1,2,3,3,3}
%e A340017      936: {1,1,1,2,2,6}    1521: {2,2,6,6}
%e A340017 For example, a complete list of all factorizations of 7560 into squarefree semiprimes is:
%e A340017   7560 = (6*6*6*35) = (6*6*10*21) = (6*6*14*15),
%e A340017 but since none of these is strict, 7560 is in the sequence.
%t A340017 strr[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strr[n/d],Min@@#>=d&]],{d,Select[Divisors[n],And[SquareFreeQ[#],PrimeOmega[#]==2]&]}]];
%t A340017 Select[Range[1000],Select[strr[#],UnsameQ@@#&]=={}&&strr[#]!={}&]
%Y A340017 See link for additional cross references.
%Y A340017 The distinct prime shadows (under A181819) of these terms are A339842.
%Y A340017 Factorizations into squarefree semiprimes are counted by A320656.
%Y A340017 Products of squarefree semiprimes that are not products of distinct semiprimes are A320893.
%Y A340017 Factorizations into distinct squarefree semiprimes are A339661.
%Y A340017 For the next four lines, we list numbers with even Omega (A028260).
%Y A340017 - A320891 cannot be factored into squarefree semiprimes.
%Y A340017 - A320894 cannot be factored into distinct squarefree semiprimes.
%Y A340017 - A320911 can be factored into squarefree semiprimes.
%Y A340017 - A339561 can be factored into distinct squarefree semiprimes.
%Y A340017 A001358 lists semiprimes, with squarefree case A006881.
%Y A340017 A002100 counts partitions into squarefree semiprimes.
%Y A340017 A030229 lists squarefree numbers with even Omega.
%Y A340017 A050320 counts factorizations into squarefree numbers.
%Y A340017 A050326 counts factorizations into distinct squarefree numbers.
%Y A340017 A181819 is the Heinz number of the prime signature of n (prime shadow).
%Y A340017 A320656 counts factorizations into squarefree semiprimes.
%Y A340017 A339560 can be partitioned into distinct strict pairs.
%Y A340017 Cf. A001055, A001222, A005117, A007717, A096373, A112798, A300061, A322353, A339559, A338899, A339740.
%K A340017 nonn
%O A340017 1,1
%A A340017 _Gus Wiseman_, Dec 30 2020