This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340017 #13 Dec 30 2020 19:57:48 %S A340017 36,100,196,216,225,360,441,484,504,540,600,676,756,792,936,1000,1089, %T A340017 1156,1176,1188,1224,1225,1296,1350,1368,1400,1404,1444,1500,1521, %U A340017 1656,1836,1960,2052,2088,2116,2160,2200,2232,2250,2484,2600,2601,2646,2664,2744 %N A340017 Products of squarefree semiprimes that are not products of distinct squarefree semiprimes. %C A340017 Of course, every number is a product of squarefree numbers (A050320). %C A340017 A squarefree semiprime (A006881) is a product of any two distinct prime numbers. %C A340017 All terms have even Omega (A001222, A028260). %H A340017 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DegreeSequence.html">Degree Sequence.</a> %H A340017 Gus Wiseman, <a href="/A339741/a339741_1.txt">Counting and ranking factorizations, factorability, and vertex-degree partitions for groupings into pairs.</a> %F A340017 Equals A320894 /\ A320911. %F A340017 Numbers n such that A320656(n) > 0 but A339661(n) = 0. %e A340017 The sequence of terms together with their prime indices begins: %e A340017 36: {1,1,2,2} 1000: {1,1,1,3,3,3} %e A340017 100: {1,1,3,3} 1089: {2,2,5,5} %e A340017 196: {1,1,4,4} 1156: {1,1,7,7} %e A340017 216: {1,1,1,2,2,2} 1176: {1,1,1,2,4,4} %e A340017 225: {2,2,3,3} 1188: {1,1,2,2,2,5} %e A340017 360: {1,1,1,2,2,3} 1224: {1,1,1,2,2,7} %e A340017 441: {2,2,4,4} 1225: {3,3,4,4} %e A340017 484: {1,1,5,5} 1296: {1,1,1,1,2,2,2,2} %e A340017 504: {1,1,1,2,2,4} 1350: {1,2,2,2,3,3} %e A340017 540: {1,1,2,2,2,3} 1368: {1,1,1,2,2,8} %e A340017 600: {1,1,1,2,3,3} 1400: {1,1,1,3,3,4} %e A340017 676: {1,1,6,6} 1404: {1,1,2,2,2,6} %e A340017 756: {1,1,2,2,2,4} 1444: {1,1,8,8} %e A340017 792: {1,1,1,2,2,5} 1500: {1,1,2,3,3,3} %e A340017 936: {1,1,1,2,2,6} 1521: {2,2,6,6} %e A340017 For example, a complete list of all factorizations of 7560 into squarefree semiprimes is: %e A340017 7560 = (6*6*6*35) = (6*6*10*21) = (6*6*14*15), %e A340017 but since none of these is strict, 7560 is in the sequence. %t A340017 strr[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strr[n/d],Min@@#>=d&]],{d,Select[Divisors[n],And[SquareFreeQ[#],PrimeOmega[#]==2]&]}]]; %t A340017 Select[Range[1000],Select[strr[#],UnsameQ@@#&]=={}&&strr[#]!={}&] %Y A340017 See link for additional cross references. %Y A340017 The distinct prime shadows (under A181819) of these terms are A339842. %Y A340017 Factorizations into squarefree semiprimes are counted by A320656. %Y A340017 Products of squarefree semiprimes that are not products of distinct semiprimes are A320893. %Y A340017 Factorizations into distinct squarefree semiprimes are A339661. %Y A340017 For the next four lines, we list numbers with even Omega (A028260). %Y A340017 - A320891 cannot be factored into squarefree semiprimes. %Y A340017 - A320894 cannot be factored into distinct squarefree semiprimes. %Y A340017 - A320911 can be factored into squarefree semiprimes. %Y A340017 - A339561 can be factored into distinct squarefree semiprimes. %Y A340017 A001358 lists semiprimes, with squarefree case A006881. %Y A340017 A002100 counts partitions into squarefree semiprimes. %Y A340017 A030229 lists squarefree numbers with even Omega. %Y A340017 A050320 counts factorizations into squarefree numbers. %Y A340017 A050326 counts factorizations into distinct squarefree numbers. %Y A340017 A181819 is the Heinz number of the prime signature of n (prime shadow). %Y A340017 A320656 counts factorizations into squarefree semiprimes. %Y A340017 A339560 can be partitioned into distinct strict pairs. %Y A340017 Cf. A001055, A001222, A005117, A007717, A096373, A112798, A300061, A322353, A339559, A338899, A339740. %K A340017 nonn %O A340017 1,1 %A A340017 _Gus Wiseman_, Dec 30 2020