cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340018 MM-numbers of labeled graphs with half-loops covering an initial interval of positive integers, without isolated vertices.

This page as a plain text file.
%I A340018 #10 Jan 03 2021 15:53:15
%S A340018 1,3,13,15,39,65,141,143,145,165,195,377,429,435,611,705,715,1131,
%T A340018 1363,1551,1595,1833,1885,1937,2021,2117,2145,2235,2365,2397,2409,
%U A340018 2431,2465,2805,3055,4089,4147,4785,5655,5811,6063,6149,6235,6351,6409,6721,6815
%N A340018 MM-numbers of labeled graphs with half-loops covering an initial interval of positive integers, without isolated vertices.
%C A340018 Here a half-loop is an edge with only one vertex, to be distinguished from a full loop, which has two equal vertices.
%C A340018 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.
%C A340018 Also products of distinct primes whose prime indices are either themselves prime or a squarefree semiprime, and whose prime indices together cover an initial interval of positive integers. A squarefree semiprime (A006881) is a product of any two distinct prime numbers.
%e A340018 The sequence of terms together with their corresponding multisets of multisets (edge sets) begins:
%e A340018      1: {}
%e A340018      3: {{1}}
%e A340018     13: {{1,2}}
%e A340018     15: {{1},{2}}
%e A340018     39: {{1},{1,2}}
%e A340018     65: {{2},{1,2}}
%e A340018    141: {{1},{2,3}}
%e A340018    143: {{3},{1,2}}
%e A340018    145: {{2},{1,3}}
%e A340018    165: {{1},{2},{3}}
%e A340018    195: {{1},{2},{1,2}}
%e A340018    377: {{1,2},{1,3}}
%e A340018    429: {{1},{3},{1,2}}
%e A340018    435: {{1},{2},{1,3}}
%e A340018    611: {{1,2},{2,3}}
%e A340018    705: {{1},{2},{2,3}}
%e A340018    715: {{2},{3},{1,2}}
%e A340018   1131: {{1},{1,2},{1,3}}
%t A340018 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A340018 normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
%t A340018 Select[Range[1000],And[SquareFreeQ[#],normQ[primeMS/@primeMS[#]],And@@(PrimeQ[#]||(SquareFreeQ[#]&&PrimeOmega[#]==2)&/@primeMS[#])]&]
%Y A340018 The version with full loops is A320461.
%Y A340018 The version not necessarily covering an initial interval is A340019.
%Y A340018 MM-numbers of graphs with loops are A340020.
%Y A340018 A006450 lists primes of prime index.
%Y A340018 A106349 lists primes of semiprime index.
%Y A340018 A257994 counts prime prime indices.
%Y A340018 A302242 is the weight of the multiset of multisets with MM-number n.
%Y A340018 A302494 lists MM-numbers of sets of sets, with connected case A328514.
%Y A340018 A309356 lists MM-numbers of simple graphs.
%Y A340018 A322551 lists primes of squarefree semiprime index.
%Y A340018 A339112 lists MM-numbers of multigraphs with loops.
%Y A340018 A339113 lists MM-numbers of multigraphs.
%Y A340018 Cf. A000040, A000720, A001222, A005117, A056239, A076610, A112798, A289509, A302590, A305079, A326754, A326788.
%K A340018 nonn
%O A340018 1,2
%A A340018 _Gus Wiseman_, Jan 02 2021