A340019 MM-numbers of labeled graphs with half-loops, without isolated vertices.
1, 3, 5, 11, 13, 15, 17, 29, 31, 33, 39, 41, 43, 47, 51, 55, 59, 65, 67, 73, 79, 83, 85, 87, 93, 101, 109, 123, 127, 129, 137, 139, 141, 143, 145, 149, 155, 157, 163, 165, 167, 177, 179, 187, 191, 195, 199, 201, 205, 211, 215, 219, 221, 233, 235, 237, 241, 249
Offset: 1
Keywords
Examples
The sequence of terms together with their corresponding multisets of multisets (edge sets) begins: 1: {} 55: {{2},{3}} 137: {{2,5}} 3: {{1}} 59: {{7}} 139: {{1,7}} 5: {{2}} 65: {{2},{1,2}} 141: {{1},{2,3}} 11: {{3}} 67: {{8}} 143: {{3},{1,2}} 13: {{1,2}} 73: {{2,4}} 145: {{2},{1,3}} 15: {{1},{2}} 79: {{1,5}} 149: {{3,4}} 17: {{4}} 83: {{9}} 155: {{2},{5}} 29: {{1,3}} 85: {{2},{4}} 157: {{12}} 31: {{5}} 87: {{1},{1,3}} 163: {{1,8}} 33: {{1},{3}} 93: {{1},{5}} 165: {{1},{2},{3}} 39: {{1},{1,2}} 101: {{1,6}} 167: {{2,6}} 41: {{6}} 109: {{10}} 177: {{1},{7}} 43: {{1,4}} 123: {{1},{6}} 179: {{13}} 47: {{2,3}} 127: {{11}} 187: {{3},{4}} 51: {{1},{4}} 129: {{1},{1,4}} 191: {{14}}
Crossrefs
The version with full loops covering an initial interval is A320461.
The case covering an initial interval is A340018.
The version with full loops is A340020.
A006450 lists primes of prime index.
A106349 lists primes of semiprime index.
A257994 counts prime prime indices.
A302242 is the weight of the multiset of multisets with MM-number n.
A309356 lists MM-numbers of simple graphs.
A322551 lists primes of squarefree semiprime index.
A330944 counts nonprime prime indices.
A339112 lists MM-numbers of multigraphs with loops.
A339113 lists MM-numbers of multigraphs.
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[1000],And[SquareFreeQ[#],And@@(PrimeQ[#]||(SquareFreeQ[#]&&PrimeOmega[#]==2)&/@primeMS[#])]&]
Comments