cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340022 Number of graphs with vertices labeled with positive integers summing to n.

This page as a plain text file.
%I A340022 #12 Jan 06 2021 13:03:57
%S A340022 1,1,3,7,22,71,319,1939,19790,377259,14603435,1144417513,176665721300,
%T A340022 52525450429119,29719386740326525,31836493683553082697,
%U A340022 64474640381705842520802,246962703426353769596309789,1791765285568042699367722904797,24670014908867411635732865067513309
%N A340022 Number of graphs with vertices labeled with positive integers summing to n.
%H A340022 Andrew Howroyd, <a href="/A340022/b340022.txt">Table of n, a(n) for n = 0..50</a>
%t A340022 permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
%t A340022 edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[v, 2]];
%t A340022 seq[n_] := 1 + Sum[s = 0; Do[s += permcount[p]*2^edges[p]*x^k/Product[1 - x^p[[j]] + O[x]^(n-k+1), {j, 1, Length[p]}],{p, IntegerPartitions[k]}]; s/k!, {k, 1, n}] // CoefficientList[#, x]&;
%t A340022 seq[19] (* _Jean-François Alcover_, Jan 06 2021, after _Andrew Howroyd_ *)
%o A340022 (PARI)
%o A340022 permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
%o A340022 edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
%o A340022 seq(n) = {Vec(1+sum(k=1, n, my(s=0); forpart(p=k, s+=permcount(p) * 2^edges(p) * x^k/prod(j=1, #p, 1 - x^p[j] + O(x^(n-k+1)))); s/k!))}
%Y A340022 Cf. A000088, A337716, A340023, A340024, A340025.
%K A340022 nonn
%O A340022 0,3
%A A340022 _Andrew Howroyd_, Jan 01 2021