This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340023 #12 Jan 06 2021 13:04:18 %S A340023 1,1,4,24,263,5566,239428,21074412,3779440490,1372163701412, %T A340023 1003687569555456,1474604145003923000,4343524388729516494384, %U A340023 25623424478746329214500144,302549202766446393276528844768,7147753721248229224770005386691680 %N A340023 Number of graphs with n integer labeled vertices covering an initial interval of positive integers. %H A340023 Andrew Howroyd, <a href="/A340023/b340023.txt">Table of n, a(n) for n = 0..50</a> %e A340023 a(2) = 4 because there are 2 graphs on 2 vertices and each of these can either have both vertices labeled 1 or one vertex labeled 1 and the other 2. %t A340023 permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m]; %t A340023 edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[v, 2]]; %t A340023 G[n_, k_] := Module[{s = 0}, Do[s += permcount[p]*2^edges[p]*k^Length[p], {p, IntegerPartitions[n]}]; s/n!]; %t A340023 a[n_] := Module[{p = G[n, x]}, Sum[(p /. x -> k)*Sum[Binomial[r, k]*(-1)^(r - k), {r, k, n}], {k, 0, n}]]; %t A340023 a /@ Range[0, 15] (* _Jean-François Alcover_, Jan 06 2021, after _Andrew Howroyd_ *) %o A340023 (PARI) %o A340023 permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} %o A340023 edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)} %o A340023 G(n,k)={my(s=0); forpart(p=n, s+=permcount(p)*2^edges(p)*k^#p); s/n!} %o A340023 a(n)={my(p=G(n,x)); sum(k=0, n, subst(p,x,k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)))} %Y A340023 Cf. A340022, A340024, A340026. %K A340023 nonn %O A340023 0,3 %A A340023 _Andrew Howroyd_, Jan 01 2021