A340031 Irregular triangle read by rows T(n,k) in which row n lists n blocks, where the m-th block consists of A000041(m-1) copies of the j-th row of triangle A127093, where j = n - m + 1 and 1 <= m <= n.
1, 1, 2, 1, 1, 0, 3, 1, 2, 1, 1, 1, 2, 0, 4, 1, 0, 3, 1, 2, 1, 2, 1, 1, 1, 1, 0, 0, 0, 5, 1, 2, 0, 4, 1, 0, 3, 1, 0, 3, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 3, 0, 0, 6, 1, 0, 0, 0, 5, 1, 2, 0, 4, 1, 2, 0, 4, 1, 0, 3, 1, 0, 3, 1, 0, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Examples
Triangle begins: [1]; [1,2], [1]; [1,0,3], [1,2], [1], [1]; [1,2,0,4], [1,0,3], [1,2], [1,2], [1], [1], [1]; [1,0,0,0,5],[1,2,0,4],[1,0,3],[1,0,3],[1,2],[1,2],[1,2],[1],[1],[1],[1],[1]; [... Written as an irregular tetrahedron the first five slices are: [1], ------- [1, 2], [1], ---------- [1, 0, 3], [1, 2], [1], [1]; ------------- [1, 2, 0, 4], [1, 0, 3], [1, 2], [1, 2], [1], [1], [1]; ---------------- [1, 0, 0, 0, 5], [1, 2, 0, 4], [1, 0, 3], [1, 0, 3], [1, 2], [1, 2], [1, 2], [1], [1], [1], [1], [1]; . The following table formed by three zones shows the correspondence between divisors and parts (n = 1..5): . |---|---------|-----|-------|---------|-----------|-------------| | n | | 1 | 2 | 3 | 4 | 5 | |---|---------|-----|-------|---------|-----------|-------------| | P | | | | | | | | A | | | | | | | | R | | | | | | | | T | | | | | | 5 | | I | | | | | | 3 2 | | T | | | | | 4 | 4 1 | | I | | | | | 2 2 | 2 2 1 | | O | | | | 3 | 3 1 | 3 1 1 | | N | | | 2 | 2 1 | 2 1 1 | 2 1 1 1 | | S | | 1 | 1 1 | 1 1 1 | 1 1 1 1 | 1 1 1 1 1 | |---|---------|-----|-------|---------|-----------|-------------| . |---|---------|-----|-------|---------|-----------|-------------| | | A181187 | 1 | 3 1 | 6 2 1 | 12 5 2 1 | 20 8 4 2 1 | | L | | | | |/| | |/|/| | |/|/|/| | |/|/|/|/| | | I | A066633 | 1 | 2 1 | 4 1 1 | 7 3 1 1 | 12 4 2 1 1 | | N | | * | * * | * * * | * * * * | * * * * * | | K | A002260 | 1 | 1 2 | 1 2 3 | 1 2 3 4 | 1 2 3 4 5 | | | | = | = = | = = = | = = = = | = = = = = | | | A138785 | 1 | 2 2 | 4 2 3 | 7 6 3 4 | 12 8 6 4 5 | |---|---------|-----|-------|---------|-----------|-------------| . |---|---------|-----|-------|---------|-----------|-------------| | | A127093 | 1 | 1 2 | 1 0 3 | 1 2 0 4 | 1 0 0 0 5 | | |---------|-----|-------|---------|-----------|-------------| | | A127093 | | 1 | 1 2 | 1 0 3 | 1 2 0 4 | | |---------|-----|-------|---------|-----------|-------------| | D | A127093 | | | 1 | 1 2 | 1 0 3 | | I | A127093 | | | 1 | 1 2 | 1 0 3 | | V |---------|-----|-------|---------|-----------|-------------| | I | A127093 | | | | 1 | 1 2 | | S | A127093 | | | | 1 | 1 2 | | O | A127093 | | | | 1 | 1 2 | | R |---------|-----|-------|---------|-----------|-------------| | S | A127093 | | | | | 1 | | | A127093 | | | | | 1 | | | A127093 | | | | | 1 | | | A127093 | | | | | 1 | | | A127093 | | | | | 1 | |---|---------|-----|-------|---------|-----------|-------------| . The table is essentially the same table of A338156 but here, in the lower zone, every row is A127093 instead of A027750. .
Links
- Paolo Xausa, Table of n, a(n) for n = 1..11552 (rows 1..17 of the triangle, flattened)
Crossrefs
Row sums give A066186.
Nonzero terms gives A338156.
Cf. A000070, A000041, A002260, A026792, A027750, A058399, A066633, A127093, A135010, A138121, A138785, A176206, A181187, A182703, A207031, A207383, A211992, A221529, A221530, A221531, A221649, A221650, A237593, A245095, A302246, A302247, A336811, A337209, A339106, A339258, A339278, A339304, A340011, A340032, A340035, A340061.
Programs
-
Mathematica
A127093row[n_]:=Table[Boole[Divisible[n,k]]k,{k,n}]; A340031row[n_]:=Flatten[Table[ConstantArray[A127093row[n-m+1],PartitionsP[m-1]],{m,n}]]; Array[A340031row,7] (* Paolo Xausa, Sep 28 2023 *)
Comments