cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340035 Irregular triangle read by rows T(n,k) in which row n lists n blocks, where the m-th block consists of A000041(n-m) copies of the divisors of m, with 1 <= m <= n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 2, 4, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 3, 1, 2, 4, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 3, 1, 3, 1, 2, 4, 1, 2, 4, 1, 5, 1, 2, 3, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2
Offset: 1

Views

Author

Omar E. Pol, Dec 26 2020

Keywords

Comments

For further information about the correspondence divisor/part see A338156.

Examples

			Triangle begins:
  1;
  1, 1, 2;
  1, 1, 1, 2, 1, 3;
  1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 2, 4;
  1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 3, 1, 2, 4, 1, 5;
  ...
Written as an irregular tetrahedron the first five slices are:
  1;
  --
  1,
  1, 2;
  -----
  1,
  1,
  1, 2
  1, 3;
  -----
  1,
  1,
  1,
  1, 2,
  1, 2,
  1, 3,
  1, 2, 4;
  --------
  1,
  1,
  1,
  1,
  1,
  1, 2,
  1, 2,
  1, 2,
  1, 3,
  1, 3,
  1, 2, 4,
  1, 5;
--------
The slices of the tetrahedron appear in the upper zone of the following table (formed by three zones) which shows the correspondence between divisors and parts (n = 1..5):
.
|---|---------|-----|-------|---------|-----------|-------------|
| n |         |  1  |   2   |    3    |     4     |      5      |
|---|---------|-----|-------|---------|-----------|-------------|
|   | A027750 |     |       |         |           |  1          |
|   | A027750 |     |       |         |           |  1          |
|   | A027750 |     |       |         |           |  1          |
|   | A027750 |     |       |         |           |  1          |
| D | A027750 |     |       |         |           |  1          |
| I |---------|-----|-------|---------|-----------|-------------|
| V | A027750 |     |       |         |  1        |  1 2        |
| I | A027750 |     |       |         |  1        |  1 2        |
| S | A027750 |     |       |         |  1        |  1 2        |
| O |---------|-----|-------|---------|-----------|-------------|
| R | A027750 |     |       |  1      |  1 2      |  1   3      |
| S | A027750 |     |       |  1      |  1 2      |  1   3      |
|   |---------|-----|-------|---------|-----------|-------------|
|   | A027750 |     |  1    |  1 2    |  1   3    |  1 2   4    |
|   |---------|-----|-------|---------|-----------|-------------|
|   | A027750 |  1  |  1 2  |  1   3  |  1 2   4  |  1       5  |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
|   | A138785 |  1  |  2 2  |  4 2 3  |  7 6 3 4  | 12 8 6 4 5  |
|   |         |  =  |  = =  |  = = =  |  = = = =  |  = = = = =  |
| L | A002260 |  1  |  1 2  |  1 2 3  |  1 2 3 4  |  1 2 3 4 5  |
| I |         |  *  |  * *  |  * * *  |  * * * *  |  * * * * *  |
| N | A066633 |  1  |  2 1  |  4 1 1  |  7 3 1 1  | 12 4 2 1 1  |
| K |         |  |  |  |\|  |  |\|\|  |  |\|\|\|  |  |\|\|\|\|  |
|   | A181187 |  1  |  3 1  |  6 2 1  | 12 5 2 1  | 20 8 4 2 1  |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
| P |         |  1  |  1 1  |  1 1 1  |  1 1 1 1  |  1 1 1 1 1  |
| A |         |     |  2    |  2 1    |  2 1 1    |  2 1 1 1    |
| R |         |     |       |  3      |  3 1      |  3 1 1      |
| T |         |     |       |         |  2 2      |  2 2 1      |
| I |         |     |       |         |  4        |  4 1        |
| T |         |     |       |         |           |  3 2        |
| I |         |     |       |         |           |  5          |
| O |         |     |       |         |           |             |
| N |         |     |       |         |           |             |
| S |         |     |       |         |           |             |
|---|---------|-----|-------|---------|-----------|-------------|
.
The table is essentially the same table of A340032 but here, in the upper zone, every row is A027750 instead of A127093.
Also the above table is the table of A338156 upside down.
The connection with the tower described in A221529 is as follows (n = 7):
|--------|------------------------|
| Level  |                        |
| in the | 7th slice of divisors  |
| tower  |                        |
|--------|------------------------|
|  11    |   1,                   |
|  10    |   1,                   |
|   9    |   1,                   |
|   8    |   1,                   |
|   7    |   1,                   |
|   6    |   1,                   |
|   5    |   1,                   |
|   4    |   1,                   |
|   3    |   1,                   |
|   2    |   1,                   |
|   1    |   1,                   |
|--------|------------------------|
|   7    |   1, 2,                |
|   6    |   1, 2,                |
|   5    |   1, 2,                |
|   4    |   1, 2,                |
|   3    |   1, 2,                |
|   2    |   1, 2,                |
|   1    |   1, 2,                |
|--------|------------------------|
|   5    |   1,    3,             |
|   4    |   1,    3,             |
|   3    |   1,    3,             |
|   2    |   1,    3,             |      Level
|   1    |   1,    3,             |             _
|--------|------------------------|       11   | |
|   3    |   1, 2,    4,          |       10   | |
|   2    |   1, 2,    4,          |        9   | |
|   1    |   1, 2,    4,          |        8   |_|_
|--------|------------------------|        7   |   |
|   2    |   1,          5,       |        6   |_ _|_
|   1    |   1,          5,       |        5   |   | |
|--------|------------------------|        4   |_ _|_|_
|   1    |   1, 2, 3,       6,    |        3   |_ _ _| |_
|--------|------------------------|        2   |_ _ _|_ _|_ _
|   1    |   1,                7; |        1   |_ _ _ _|_|_ _|
|--------|------------------------|
             Figure 1.                            Figure 2.
                                                Lateral view
                                                of the tower.
.
                                                _ _ _ _ _ _ _
                                               |_| | | | |   |
                                               |_ _|_| | |   |
                                               |_ _|  _|_|   |
                                               |_ _ _|    _ _|
                                               |_ _ _|  _|
                                               |       |
                                               |_ _ _ _|
.
                                                  Figure 3.
                                                  Top view
                                                of the tower.
.
Figure 1 shows the terms of the 7th row of the triangle arranged as the 7th slice of the tetrahedron. The left hand column (see figure 1) gives the level of the sum of the divisors in the tower (see figures 2 and 3).
		

Crossrefs

Programs

  • Mathematica
    A340035row[n_]:=Flatten[Array[ConstantArray[Divisors[#],PartitionsP[n-#]]&,n]];
    nrows=7;Array[A340035row,nrows] (* Paolo Xausa, Jun 20 2022 *)