cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340057 Irregular triangle read by rows T(n,k) in which row n lists n blocks, where the block m consists of the divisors of m multiplied by A000041(n-m), with 1 <= m <= n.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 2, 1, 3, 3, 2, 4, 1, 3, 1, 2, 4, 5, 3, 6, 2, 6, 1, 2, 4, 1, 5, 7, 5, 10, 3, 9, 2, 4, 8, 1, 5, 1, 2, 3, 6, 11, 7, 14, 5, 15, 3, 6, 12, 2, 10, 1, 2, 3, 6, 1, 7, 15, 11, 22, 7, 21, 5, 10, 20, 3, 15, 2, 4, 6, 12, 1, 7, 1, 2, 4, 8, 22, 15, 30, 11, 33, 7, 14, 28, 5, 25
Offset: 1

Views

Author

Omar E. Pol, Dec 27 2020

Keywords

Comments

This triangle is a condensed version of the more irregular triangle A340035.
For further information about the correspondence divisor/part see A338156.

Examples

			Triangle begins:
  [1];
  [1],  [1, 2];
  [2],  [1, 2],  [1, 3];
  [3],  [2, 4],  [1, 3],  [1, 2, 4];
  [5],  [3, 6],  [2, 6],  [1, 2, 4],  [1, 5];
  [7],  [5, 10], [3, 9],  [2, 4, 8],  [1, 5],  [1, 2, 3, 6];
  [11], [7, 14], [5, 15], [3, 6, 12], [2, 10], [1, 2, 3, 6], [1, 7];
  ...
Row sums gives A066186.
Written as a tetrahedrons the first five slices are:
  --
  1;
  --
  1,
  1, 2;
  -----
  2,
  1, 2,
  1, 3;
  -----
  3,
  2, 4,
  1, 3,
  1, 2, 4;
  --------
  5,
  3, 6,
  2, 6,
  1, 2, 4,
  1, 5;
  --------
Row sums give A221529.
The slices of the tetrahedron appear in the upper zone of the following table (formed by four zones) which shows the correspondence between divisors and parts (n = 1..5):
.
|---|---------|-----|-------|---------|-----------|-------------|
| n |         |  1  |   2   |    3    |     4     |      5      |
|---|---------|-----|-------|---------|-----------|-------------|
|   |    -    |     |       |         |           |  5          |
| C |    -    |     |       |         |  3        |  3 6        |
| O |    -    |     |       |  2      |  2 4      |  2   6      |
| N | A027750 |     |  1    |  1 2    |  1   3    |  1 2   4    |
| D | A027750 |  1  |  1 2  |  1   3  |  1 2   4  |  1       5  |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
|   | A027750 |     |       |         |           |  1          |
|   | A027750 |     |       |         |           |  1          |
|   | A027750 |     |       |         |           |  1          |
|   | A027750 |     |       |         |           |  1          |
| D | A027750 |     |       |         |           |  1          |
| I |---------|-----|-------|---------|-----------|-------------|
| V | A027750 |     |       |         |  1        |  1 2        |
| I | A027750 |     |       |         |  1        |  1 2        |
| S | A027750 |     |       |         |  1        |  1 2        |
| O |---------|-----|-------|---------|-----------|-------------|
| R | A027750 |     |       |  1      |  1 2      |  1   3      |
| S | A027750 |     |       |  1      |  1 2      |  1   3      |
|   |---------|-----|-------|---------|-----------|-------------|
|   | A027750 |     |  1    |  1 2    |  1   3    |  1 2   4    |
|   |---------|-----|-------|---------|-----------|-------------|
|   | A027750 |  1  |  1 2  |  1   3  |  1 2   4  |  1       5  |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
|   | A138785 |  1  |  2 2  |  4 2 3  |  7 6 3 4  | 12 8 6 4 5  |
|   |         |  =  |  = =  |  = = =  |  = = = =  |  = = = = =  |
| L | A002260 |  1  |  1 2  |  1 2 3  |  1 2 3 4  |  1 2 3 4 5  |
| I |         |  *  |  * *  |  * * *  |  * * * *  |  * * * * *  |
| N | A066633 |  1  |  2 1  |  4 1 1  |  7 3 1 1  | 12 4 2 1 1  |
| K |         |  |  |  |\|  |  |\|\|  |  |\|\|\|  |  |\|\|\|\|  |
|   | A181187 |  1  |  3 1  |  6 2 1  | 12 5 2 1  | 20 8 4 2 1  |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
| P |         |  1  |  1 1  |  1 1 1  |  1 1 1 1  |  1 1 1 1 1  |
| A |         |     |  2    |  2 1    |  2 1 1    |  2 1 1 1    |
| R |         |     |       |  3      |  3 1      |  3 1 1      |
| T |         |     |       |         |  2 2      |  2 2 1      |
| I |         |     |       |         |  4        |  4 1        |
| T |         |     |       |         |           |  3 2        |
| I |         |     |       |         |           |  5          |
| O |         |     |       |         |           |             |
| N |         |     |       |         |           |             |
| S |         |     |       |         |           |             |
|---|---------|-----|-------|---------|-----------|-------------|
.
The upper zone is a condensed version of the "divisors" zone.
The above table is the table of A340056 upside down.
		

Crossrefs

Programs

  • Mathematica
    A340057row[n_]:=Flatten[Table[Divisors[m]PartitionsP[n-m],{m,n}]];Array[A340057row,10] (* Paolo Xausa, Sep 02 2023 *)