This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340058 #45 Jan 01 2021 12:54:14 %S A340058 4,6,8,9,10,12,14,15,16,18,20,21,22,24,25,26,27,28,30,32,33,34,36,38, %T A340058 39,40,42,44,45,46,48,49,50,51,52,54,56,57,58,60,62,63,64,65,66,68,69, %U A340058 70,72,74,75,76,78,80,81,82,84,85,86,87,88,90,91,92,93,94,96,98,99 %N A340058 Composite numbers c such that phi(c)/phi(mind(c)) mod phi(c)/phi(maxd(c)) = 0, where phi is the Euler function, mind(c) is the smallest nontrivial divisor of c, maxd(c) is the largest nontrivial divisor of c. %C A340058 This equivalence criterion splits a set of composite numbers into two classes and can be used to count certain combinatorial objects. %o A340058 (MATLAB) %o A340058 n=100; % gives all terms of the sequence not exceeding n %o A340058 A=[]; %o A340058 for i=1:n %o A340058 dn=divisors(i); %o A340058 if size(dn,2)>2 && mod(totient(i)/totient(dn(2)),totient(i)/totient(dn(end-1)))==0 %o A340058 A=[A i]; %o A340058 end %o A340058 end %o A340058 function [res] = totient(n) %o A340058 res=0; %o A340058 for i=1:n %o A340058 if gcd(i,n)==1 %o A340058 res=res+1; %o A340058 end %o A340058 end %o A340058 end %o A340058 (PARI) isok(c) = if ((c>1) && !isprime(c), my(t=eulerphi(c), d=divisors(c)); ((t/eulerphi(d[2])) % (t/eulerphi(d[#d-1]))) == 0); \\ _Michel Marcus_, Dec 28 2020 %Y A340058 Cf. A000010, A002808, A335902. %K A340058 nonn %O A340058 1,1 %A A340058 _Maxim Karimov_, Dec 27 2020