This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340065 #27 Jan 23 2024 08:42:10 %S A340065 1,8,1,0,7,8,1,4,7,6,1,2,1,5,6,2,9,5,2,2,4,3,1,2,5,9,0,4,4,8,6,2,5,1, %T A340065 8,0,8,9,7,2,5,0,3,6,1,7,9,4,5,0,0,7,2,3,5,8,9,0,0,1,4,4,7,1,7,8,0,0, %U A340065 2,8,9,4,3,5,6,0,0,5,7,8,8,7,1,2,0,1,1,5,7,7,4,2,4,0,2,3,1,5,4,8,4,8,0,4,6 %N A340065 Decimal expansion of the Product_{p>=2} 1+p^2/((p-1)^2*(p+1)^2) where p are successive prime numbers A000040. %C A340065 This is a rational number. %C A340065 This constant does not belong to the infinite series of prime number products of the form: Product_{p>=2} (p^(2*n)-1)/(p^(2*n)+1), %C A340065 which are rational numbers equal to zeta(4*n)/(zeta(2*n))^2 = A114362(n+1)/A114363(n+1). %C A340065 This number has decimal period length 230: %C A340065 1.81(0781476121562952243125904486251808972503617945007235890014471780028943 %C A340065 5600578871201157742402315484804630969609261939218523878437047756874095 %C A340065 5137481910274963820549927641099855282199710564399421128798842257597684 %C A340065 51519536903039073806). %F A340065 Equals 5005/2764 = 5*7*11*13/(2^2*691). %F A340065 Equals Product_{n>=1} 1+A000040(n)^2/A084920(n)^2. %F A340065 Equals (13/9)*A340066. %F A340065 From _Vaclav Kotesovec_, Dec 29 2020: (Start) %F A340065 Equals 3/2 * (Product_{p prime} (p^6+1)/(p^6-1)) * (Product_{p prime} (p^4+1)/(p^4-1)). %F A340065 Equals 7*zeta(6)^2 / (4*zeta(12)). %F A340065 Equals -7*binomial(12, 6) * Bernoulli(6)^2 / (8*Bernoulli(12)). (End) %F A340065 Equals Sum_{k>=1} A005361(k)/k^2. - _Amiram Eldar_, Jan 23 2024 %e A340065 1.8107814761215629522431259... %t A340065 RealDigits[N[5005/2764,105]][[1]] %o A340065 (PARI) %o A340065 default(realprecision,105) %o A340065 prodeulerrat(1+p^2/((p-1)^2*(p+1)^2)) %Y A340065 Cf. A000040, A005361, A084920, A065483, A065484, A065485, A109695, A111003, A114362, A114363, A116393, A167864, A231535, A307868, A330523, A330595, A335319, A335762, A335818, A339925, A340066. %K A340065 nonn,cons,easy %O A340065 1,2 %A A340065 _Artur Jasinski_, Dec 28 2020