This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340069 #102 Jan 09 2021 11:06:21 %S A340069 0,1,2,3,4,7,6,14,5,15,27,12,24,10,19,30,8,31,43,28,39,13,35,45,48,62, %T A340069 20,57,37,63,60,79,9,126,91,11,86,29,56,23,54,75,26,51,70,46,47,22,89, %U A340069 21,93,83,40,61,114,78,38,18,71,87,77,42,124,127,16,254,187,92,151,90,44,58,117 %N A340069 a(n) is the smallest number k not yet used such that the number of 1-bits in the binary representation of k equals the number of 1-bits in the binary representation of k*n. %C A340069 I would call this sequence "the evil beast" because it shows many patterns, but for each pattern there seems to be a value of n at which the rules change suddenly or some unexpected exceptions occur. %C A340069 If n is a power of 2 any number satisfies the condition as the number of 1-bits does not change by multiplication by a power of 2. Because of this every number eventually has a chance to appear in this sequence; this proves that this sequence is a permutation of the nonnegative integers. %C A340069 This sequence may have applications in finding small pairs of b and c such that A000120(b)=A000120(c*b), because A000120(a(n))=A000120(a(n)*n). %C A340069 All fixed points n = a(n) are described in A340100 and are a subset of A077436. %C A340069 In the range n = 0..100000 the largest value a(n) is 131072 = a(32769), but the smallest value in the range n = 30000..40000 is a(32768) = 137. %C A340069 If A000120(b)=A000120(c*b) then A000120(b*2^d)=A000120(c*b*2^d); this causes some patterns in this sequence which may be valid in a limited range of n. Can we find one which is valid for a large range of values of n? %C A340069 If a(n) is a power of two, then n is a power of two as well. But if n is a power of two, a(n) is not always a power of two. %C A340069 In equations of the form A000120(c)=A000120(c*b) for all A000120(c)=2 we find all solutions for b as b=0, b=2^d or b=(2^d)*(1+2^(((c-1)/2)+e*(c-1)))/c, if c is odd. For even c divide c by largest possible power of two. An example for c=3 is b=A263132. %C A340069 a(n) >= A292849(n). This lower bound is responsible for some of the peaks in this sequence. %H A340069 Thomas Scheuerle, <a href="/A340069/b340069.txt">Table of n, a(n) for n = 0..10000</a> %H A340069 Thomas Scheuerle, <a href="/A340069/a340069.svg">This sequence shows an extreme chaotic graph</a>. %H A340069 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %F A340069 a(n) = n if n < 5. %F A340069 a(2^(2*n)) = 2^(1+n) if n < 5. %F A340069 a(2^(2*n+1)) = 2^(1+n)+1 if n < 5. %F A340069 a(3*2^n) = 3*2^(n+1) if n > 0 and < 4. %o A340069 (MATLAB) %o A340069 function a = A340069( max_n ) %o A340069 a(1) = 1; %o A340069 n = 2; %o A340069 t = 1; %o A340069 while n <= max_n %o A340069 % search next number t not yet used in a %o A340069 while ~isempty(find(a==t, 1)) %o A340069 t = t+1; %o A340069 end %o A340069 bits1 = length(find(bitget(t,1:32)== 1)); %o A340069 bits2 = length(find(bitget(t*n,1:32)== 1)); %o A340069 if (bits1 == bits2) %o A340069 % we found a candidate %o A340069 a(n) = t; %o A340069 t = 1; %o A340069 n = n+1; %o A340069 else %o A340069 % number t does not yet fit %o A340069 t = t+1; %o A340069 end %o A340069 end %o A340069 end %o A340069 (PARI) lista(nn) = {my(va = vector(nn, k, -1)); for (n=0, nn-1, my(k=0); while(! ((hammingweight(k*n) == hammingweight(k)) && !(#select(x->(x==k), va))), k++); va[n+1] = k;); va;} \\ _Michel Marcus_, Dec 30 2020 %o A340069 (Python) %o A340069 def binwt(n): return bin(n).count('1') %o A340069 def aupto(n): %o A340069 alst, aset = [], set() %o A340069 for k in range(n+1): %o A340069 ak = 0 %o A340069 while True: %o A340069 while ak in aset: ak += 1 %o A340069 if binwt(ak)==binwt(k*ak): break %o A340069 ak += 1 %o A340069 alst.append(ak) %o A340069 aset.add(ak) %o A340069 return alst %o A340069 print(aupto(72)) # _Michael S. Branicky_, Jan 02 2021 %Y A340069 Cf. A000120, A077436, A340100, A263132 (numbers such that A000120(3)=A000120(3*m)), A077459 (numbers such that A000120(m)=A000120(3*m)), A292849 (the least m such that A000120(n*m) = A000120(m)), A340351. %K A340069 nonn,base %O A340069 0,3 %A A340069 _Thomas Scheuerle_, Dec 28 2020