This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340072 #16 Jan 04 2022 04:08:12 %S A340072 1,1,1,3,1,4,1,9,5,3,1,6,1,5,12,27,1,20,1,18,20,12,1,36,7,16,25,30,1, %T A340072 6,1,81,3,9,15,15,1,11,16,27,1,20,1,18,20,28,1,54,11,42,36,12,1,100,4, %U A340072 45,44,15,1,72,1,36,100,243,48,48,1,54,7,12,1,180,1,40,42,66,60,64,1,162,125,21,1,120,9,23,60,108 %N A340072 a(n) = phi(x) / gcd(x-1, phi(x)), where x = A003961(n), i.e., n with its prime factorization shifted one step towards larger primes. %C A340072 Prime shifted analog of A160595. %H A340072 Antti Karttunen, <a href="/A340072/b340072.txt">Table of n, a(n) for n = 1..8191</a> %H A340072 Antti Karttunen, <a href="/A340072/a340072.txt">Data supplement: n, a(n) computed for n = 1..65537</a> %H A340072 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %F A340072 a(n) = A160595(A003961(n)). %F A340072 a(n) = A003972(n) / A340071(n). %p A340072 f:= proc(n) local F,x,p,t; %p A340072 F:= ifactors(n)[2]; %p A340072 x:= mul(nextprime(t[1])^t[2],t=F); %p A340072 p:= numtheory:-phi(x); %p A340072 p/igcd(x-1,p) %p A340072 end proc: %p A340072 map(f,[$1..100]); # _Robert Israel_, Dec 28 2020 %t A340072 a[n_] := Module[{x, p, e, phi}, x = Product[{p, e} = pe; NextPrime[p]^e, {pe, FactorInteger[n]}]; phi = EulerPhi[x]; phi/GCD[x-1, phi]]; %t A340072 Array[a, 100] (* _Jean-François Alcover_, Jan 04 2022 *) %o A340072 (PARI) %o A340072 A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; %o A340072 A340072(n) = { my(x=A003961(n), u=eulerphi(x)); u/gcd(x-1, u); }; %Y A340072 Cf. A000010, A003961, A003972, A160595, A253885, A340071, A340073, A340075 (gives the odd part). %Y A340072 Cf. also A340082. %K A340072 nonn %O A340072 1,4 %A A340072 _Antti Karttunen_, Dec 28 2020