This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340102 #7 Dec 30 2020 19:58:03 %S A340102 0,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,2,1,1, %T A340102 1,1,1,2,1,1,2,1,1,1,1,1,1,1,1,2,1,1,2,1,1,1,1,1,2,1,1,1,2,1,1,1,1,3, %U A340102 1,1,1,1,1,2,1,1,2,1,1,1,1,1,2,1,1,2,1 %N A340102 Number of factorizations of 2n + 1 into an odd number of odd factors > 1. %e A340102 The factorizations for 2n + 1 = 135, 225, 315, 405, 675, 1155, 1215: %e A340102 135 225 315 405 675 1155 1215 %e A340102 3*5*9 5*5*9 5*7*9 5*9*9 3*3*75 3*5*77 3*5*81 %e A340102 3*3*15 3*3*25 3*3*35 3*3*45 3*5*45 3*7*55 3*9*45 %e A340102 3*5*15 3*5*21 3*5*27 3*9*25 5*7*33 5*9*27 %e A340102 3*7*15 3*9*15 5*5*27 3*11*35 9*9*15 %e A340102 3*3*3*3*5 5*9*15 5*11*21 3*15*27 %e A340102 3*15*15 7*11*15 3*3*135 %e A340102 3*3*3*5*5 3*3*3*5*9 %e A340102 3*3*3*3*15 %p A340102 g:= proc(n, k, t) option remember; `if`(n>k, 0, t)+ %p A340102 `if`(isprime(n), 0, add(`if`(d>k, 0, g(n/d, d, 1-t)), %p A340102 d=numtheory[divisors](n) minus {1, n})) %p A340102 end: %p A340102 a:= n-> `if`(n=0, 0, g(2*n+1$2, 1)): %p A340102 seq(a(n), n=0..100); # _Alois P. Heinz_, Dec 30 2020 %t A340102 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A340102 Table[Length[Select[facs[n],OddQ[Length[#]]&&OddQ[Times@@#]&]],{n,1,100,2}]; %Y A340102 The version for partitions is A160786, ranked by A300272. %Y A340102 The not necessarily odd-length version is A340101. %Y A340102 A000009 counts partitions into odd parts, ranked by A066208. %Y A340102 A001055 counts factorizations, with strict case A045778. %Y A340102 A027193 counts partitions of odd length, ranked by A026424. %Y A340102 A058695 counts partitions of odd numbers, ranked by A300063. %Y A340102 A316439 counts factorizations by product and length. %Y A340102 Cf. A000700, A002033, A027187, A028260, A074206, A078408, A174726, A236914, A320732, A339846. %K A340102 nonn %O A340102 0,14 %A A340102 _Gus Wiseman_, Dec 30 2020