A340109 Coreful 3-abundant numbers: numbers k such that csigma(k) > 3*k, where csigma(k) is the sum of the coreful divisors of k (A057723).
5400, 7200, 10800, 14400, 16200, 18000, 21168, 21600, 27000, 28800, 32400, 36000, 37800, 42336, 43200, 48600, 50400, 54000, 56448, 57600, 59400, 63504, 64800, 70200, 72000, 75600, 79200, 81000, 84672, 86400, 88200, 90000, 91800, 93600, 97200, 98784, 100800, 102600
Offset: 1
Keywords
Examples
5400 is a term since csigma(5400) = 16380 > 3 * 5400.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - 1; s[1] = 1; s[n_] := Times @@ (f @@@ FactorInteger[n]); Select[Range[10^5], s[#] > 3*# &]
-
PARI
s(n) = {my(f = factor(n)); prod(i = 1, #f~, sigma(f[i, 1]^f[i, 2]) - 1);} is(n) = s(n) > 3*n; \\ Amiram Eldar, Aug 15 2023
Comments