This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340132 #21 Apr 01 2021 23:09:54 %S A340132 1083289,3818929,6104641,6868801,7623529,8465209,9033649,10105489, %T A340132 11400481,11597569,11809561,12338041,12348961,13154761,13426009, %U A340132 15861169,16889161,16922161,18596449,19684729,20322481,21067201,21480001,22684561,23654569,24531049 %N A340132 Least prime numbers, in ascending order, such that each of them can be written, in a unique way, in the form x^2 + h*y^2, where x, y are natural numbers, while h takes all the values of the sequence A000926 (idoneal numbers). %C A340132 First number in this sequence is equal to last number of sequence A338088. %C A340132 The sequence is obtained using Lista(m), with m=246*10^5, see section PROG. It's possible to increase m to discover more terms of the sequence. %e A340132 1083289 = 315^2 + A000926(1)*992^2 %e A340132 = 1033^2 + A000926(2)*90^2 %e A340132 = 979^2 + A000926(3)*204^2 %e A340132 = ... %e A340132 = 817^2 + A000926(65)*15^2. %o A340132 (PARI) Idoneal()={return(select(m->!#select(k->k<>2, quadclassunit(-4*m).cyc), [1..1848]));} %o A340132 isok(p,u)={my (i, s, n=matsize(u)[2], t=0);for(i=1, n, s=kronecker(-u[i],p); if(s==1, t++,break));if(t==n,t=0;for(i=1, n, s=qfbsolve(Qfb(1,0,u[i]),p); if(s==[], break,t++)));if(t==n,1,0)} %o A340132 Primo(p, m)={my(u=Idoneal()); while(p<m, p=nextprime(p+1); if(isok(p,u),return(p)));return(0)} %o A340132 Lista(m)={ my (q,r=108*10^4,v=[]); q=nextprime(r); m=precprime(m); while(q<m,r=q;q=Primo(r,m);if(q>r,v=concat(v,q),q=m)); return(v);} %Y A340132 Cf. A000926, A338088. %K A340132 nonn %O A340132 1,1 %A A340132 _Marco Frigerio_, Dec 29 2020