cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340133 The sequence lists the least prime numbers, in ascending order, such that each of them can be written, in a unique way, in the form x^2 + h*y^2, where x, y are natural numbers, while h takes all the values of the sequences A000926 (Idoneal numbers) and A003173 (Heegner numbers). See example.

This page as a plain text file.
%I A340133 #20 Apr 01 2021 23:10:15
%S A340133 3230498881,5086789009,6956459689,7260636769,12387462649,13125124321,
%T A340133 14049841129,14247509329,14310889849,15871864849,16573389361,
%U A340133 17502040609,17768627809,22042168201,22621870441,22957650769,23018043409,23819076121,25228204849,26585136601
%N A340133 The sequence lists the least prime numbers, in ascending order, such that each of them can be written, in a unique way, in the form x^2 + h*y^2, where x, y are natural numbers, while h takes all the values of the sequences A000926 (Idoneal numbers) and A003173 (Heegner numbers). See example.
%C A340133 First number in this sequence is equal to least common number of sequences A340055 and A340132.
%C A340133 The sequence is obtained using Lista(m), with m=266*10^8, see section PROG. It's possible increase m to discover more terms of the sequence. It's also possible to extend the sequences A340055 and A340132 to check their common numbers.
%e A340133 3230498881 = 2465^2+A000926(1)*56784^2
%e A340133            = 56609^2+A000926(2)*3600^2
%e A340133            = 35927^2+A000926(3)*25428^2
%e A340133            = ...
%e A340133            = 56791^2+A003173(9)*180^2
%e A340133            = ...
%e A340133            = 35743^2+A000926(65)*1028^2
%o A340133 (PARI) Union()={ my (v);v=(select(m->!#select(k->k<>2, quadclassunit(-4*m).cyc), [1..1848]));for(k=3, 41, d=4*k-1; if(isprime(d) && qfbclassno(-d)==1, v=concat(v, d)));return(v);}
%o A340133 isok(p,u)={my (i, s, n=matsize(u)[2], t=0);for(i=1, n, s=kronecker(-u[i],p); if(s==1, t++,break));if(t==n,t=0;for(i=1, n, s=qfbsolve(Qfb(1,0,u[i]),p); if(s==[], break,t++)));if(t==n,1,0)}
%o A340133 Primo(p, m)={my(u=Union()); while(p<m, p=nextprime(p+1); if(isok(p,u),return(p)));return(0)}
%o A340133 Lista(m)={ my (q,r=323*10^7,v=[]); q=nextprime(r); m=precprime(m); while(q<m,r=q;q=Primo(r,m);if(q>r,v=concat(v,q),q=m)); return(v);}
%Y A340133 Cf. A000926, A003173, A340055, A340132.
%K A340133 nonn
%O A340133 1,1
%A A340133 _Marco Frigerio_, Dec 29 2020