cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340135 Number of pairs of independent nontrivial subsets of a finite set composed of n elements.

This page as a plain text file.
%I A340135 #9 Dec 22 2024 16:24:23
%S A340135 0,0,0,0,24,0,720,0,7000,15120,126000,0,1777776,0,23543520,55855800,
%T A340135 274565720,0,5337775872,0,63026049424,117920013120,995265791520,0,
%U A340135 15265486117744,14283091977000,216344919117600,240142901941800,2854493961432480,0,55689696384165720
%N A340135 Number of pairs of independent nontrivial subsets of a finite set composed of n elements.
%C A340135 A subset X of a set S is called a trivial subset, if it is equal to the empty set or to the full set S. The subsets A and B of a finite set S are called independent, if #A/#S * #B/#S = #(A \intersect B)/#S.
%H A340135 Jochen Ziegenbalg, <a href="https://jochen-ziegenbalg.github.io/materialien/Manuskripte/independent-subsets.pdf">Independent subsets</a>
%e A340135 For n=4 and S={1,2,3,4} the a(4)=24 pairs of independent nontrivial subsets of S are
%e A340135 {{1, 2}, {1, 3}}, {{1, 2}, {1, 4}}, {{1, 2}, {2, 3}}, {{1, 2}, {2, 4}},
%e A340135 {{1, 3}, {1, 2}}, {{1, 3}, {1, 4}}, {{1, 3}, {2, 3}}, {{1, 3}, {3, 4}},
%e A340135 {{1, 4}, {1, 2}}, {{1, 4}, {1, 3}}, {{1, 4}, {2, 4}}, {{1, 4}, {3, 4}},
%e A340135 {{2, 3}, {1, 2}}, {{2, 3}, {1, 3}}, {{2, 3}, {2, 4}}, {{2, 3}, {3, 4}},
%e A340135 {{2, 4}, {1, 2}}, {{2, 4}, {1, 4}}, {{2, 4}, {2, 3}}, {{2, 4}, {3, 4}},
%e A340135 {{3, 4}, {1, 3}}, {{3, 4}, {1, 4}}, {{3, 4}, {2, 3}}, {{3, 4}, {2, 4}}
%e A340135 Tables:
%e A340135      n                all        independent        independent
%e A340135               independent             proper         nontrivial
%e A340135                   subsets            subsets            subsets
%e A340135             (see A121312)      (see A158345)               a(n)
%e A340135      0                  1                  0                  0
%e A340135      1                  4                  1                  0
%e A340135      2                 12                  5                  0
%e A340135      3                 28                 13                  0
%e A340135      4                 84                 53                 24
%e A340135      5                124                 61                  0
%e A340135      6                972                845                720
%e A340135      7                508                253                  0
%e A340135      8               8020               7509               7000
%e A340135      9              17164              16141              15120
%e A340135     10             130092             128045             126000
%e A340135     11               8188               4093                  0
%e A340135     12            1794156            1785965            1777776
%e A340135     13              32764              16381                  0
%e A340135     14           23609052           23576285           23543520
%e A340135     15           55986868           55921333           55855800
%e A340135     16          274827860          274696789          274565720
%e A340135     17             524284             262141                  0
%e A340135     18         5338824444         5338300157         5337775872
%e A340135     19            2097148            1048573                  0
%e A340135     20        63030243724        63028146573        63026049424
%e A340135     21       117928401724       117924207421       117920013120
%e A340135     22       995282568732       995274180125       995265791520
%e A340135     23           33554428           16777213                  0
%e A340135     24     15265553226604     15265519672173     15265486117744
%e A340135     25     14283226194724     14283159085861     14283091977000
%e A340135     26    216345187553052    216345053335325    216344919117600
%e A340135     27    240143438812708    240143170377253    240142901941800
%e A340135     28   2854495035174300   2854494498303389   2854493961432480
%e A340135     29         2147483644         1073741821                  0
%e A340135     30  55689700679133012  55689698531649365  55689696384165720
%o A340135 (Maxima)   /* version 1 */
%o A340135 pairs_independent_nontrivial_subsets(n) :=
%o A340135 block([a, b, d, s : 0 ],
%o A340135   for a:1 thru n-1 do
%o A340135     for d:1 thru a do
%o A340135         ( b : n*d / a,
%o A340135           if integerp(b) and b<n
%o A340135               then (s : s + binomial(n,a)*binomial(a,d)*binomial(n-a,b-d) ) ),
%o A340135     s );
%o A340135 (Maxima)   /* version 2 */
%o A340135 a(n) :=
%o A340135 sum(
%o A340135   sum(
%o A340135     (b : n*d / a,
%o A340135      if integerp(b) and b<n then
%o A340135        binomial(n,a)*binomial(a,d)*binomial(n-a,b-d) else 0), d,1,a), a,1,n-1) ;
%Y A340135 Cf. A121312 (independent subsets), A158345 (independent proper subsets).
%K A340135 nonn
%O A340135 0,5
%A A340135 _Jochen Ziegenbalg_, Dec 29 2020