This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340135 #9 Dec 22 2024 16:24:23 %S A340135 0,0,0,0,24,0,720,0,7000,15120,126000,0,1777776,0,23543520,55855800, %T A340135 274565720,0,5337775872,0,63026049424,117920013120,995265791520,0, %U A340135 15265486117744,14283091977000,216344919117600,240142901941800,2854493961432480,0,55689696384165720 %N A340135 Number of pairs of independent nontrivial subsets of a finite set composed of n elements. %C A340135 A subset X of a set S is called a trivial subset, if it is equal to the empty set or to the full set S. The subsets A and B of a finite set S are called independent, if #A/#S * #B/#S = #(A \intersect B)/#S. %H A340135 Jochen Ziegenbalg, <a href="https://jochen-ziegenbalg.github.io/materialien/Manuskripte/independent-subsets.pdf">Independent subsets</a> %e A340135 For n=4 and S={1,2,3,4} the a(4)=24 pairs of independent nontrivial subsets of S are %e A340135 {{1, 2}, {1, 3}}, {{1, 2}, {1, 4}}, {{1, 2}, {2, 3}}, {{1, 2}, {2, 4}}, %e A340135 {{1, 3}, {1, 2}}, {{1, 3}, {1, 4}}, {{1, 3}, {2, 3}}, {{1, 3}, {3, 4}}, %e A340135 {{1, 4}, {1, 2}}, {{1, 4}, {1, 3}}, {{1, 4}, {2, 4}}, {{1, 4}, {3, 4}}, %e A340135 {{2, 3}, {1, 2}}, {{2, 3}, {1, 3}}, {{2, 3}, {2, 4}}, {{2, 3}, {3, 4}}, %e A340135 {{2, 4}, {1, 2}}, {{2, 4}, {1, 4}}, {{2, 4}, {2, 3}}, {{2, 4}, {3, 4}}, %e A340135 {{3, 4}, {1, 3}}, {{3, 4}, {1, 4}}, {{3, 4}, {2, 3}}, {{3, 4}, {2, 4}} %e A340135 Tables: %e A340135 n all independent independent %e A340135 independent proper nontrivial %e A340135 subsets subsets subsets %e A340135 (see A121312) (see A158345) a(n) %e A340135 0 1 0 0 %e A340135 1 4 1 0 %e A340135 2 12 5 0 %e A340135 3 28 13 0 %e A340135 4 84 53 24 %e A340135 5 124 61 0 %e A340135 6 972 845 720 %e A340135 7 508 253 0 %e A340135 8 8020 7509 7000 %e A340135 9 17164 16141 15120 %e A340135 10 130092 128045 126000 %e A340135 11 8188 4093 0 %e A340135 12 1794156 1785965 1777776 %e A340135 13 32764 16381 0 %e A340135 14 23609052 23576285 23543520 %e A340135 15 55986868 55921333 55855800 %e A340135 16 274827860 274696789 274565720 %e A340135 17 524284 262141 0 %e A340135 18 5338824444 5338300157 5337775872 %e A340135 19 2097148 1048573 0 %e A340135 20 63030243724 63028146573 63026049424 %e A340135 21 117928401724 117924207421 117920013120 %e A340135 22 995282568732 995274180125 995265791520 %e A340135 23 33554428 16777213 0 %e A340135 24 15265553226604 15265519672173 15265486117744 %e A340135 25 14283226194724 14283159085861 14283091977000 %e A340135 26 216345187553052 216345053335325 216344919117600 %e A340135 27 240143438812708 240143170377253 240142901941800 %e A340135 28 2854495035174300 2854494498303389 2854493961432480 %e A340135 29 2147483644 1073741821 0 %e A340135 30 55689700679133012 55689698531649365 55689696384165720 %o A340135 (Maxima) /* version 1 */ %o A340135 pairs_independent_nontrivial_subsets(n) := %o A340135 block([a, b, d, s : 0 ], %o A340135 for a:1 thru n-1 do %o A340135 for d:1 thru a do %o A340135 ( b : n*d / a, %o A340135 if integerp(b) and b<n %o A340135 then (s : s + binomial(n,a)*binomial(a,d)*binomial(n-a,b-d) ) ), %o A340135 s ); %o A340135 (Maxima) /* version 2 */ %o A340135 a(n) := %o A340135 sum( %o A340135 sum( %o A340135 (b : n*d / a, %o A340135 if integerp(b) and b<n then %o A340135 binomial(n,a)*binomial(a,d)*binomial(n-a,b-d) else 0), d,1,a), a,1,n-1) ; %Y A340135 Cf. A121312 (independent subsets), A158345 (independent proper subsets). %K A340135 nonn %O A340135 0,5 %A A340135 _Jochen Ziegenbalg_, Dec 29 2020