cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340137 Numbers k in A305056 such that k*A002110(j) is in A004490.

This page as a plain text file.
%I A340137 #8 Jan 12 2021 18:03:39
%S A340137 1,2,4,12,24,48,144,720,1440,10080,30240,60480,302400,3326400,6652800,
%T A340137 19958400,259459200,518918400,3632428800,61751289600,1173274502400,
%U A340137 3519823507200,17599117536000,35198235072000,809559406656000,1619118813312000,46954445586048000
%N A340137 Numbers k in A305056 such that k*A002110(j) is in A004490.
%C A340137 All terms are in A025487, since all terms m in A004490 are products of primorials P in A002110.
%C A340137 Let Q = A002110(A001221(m)) be the largest primorial divisor Q | m. The terms in this sequence are the primitive quotients k = m/Q for m in A004490.
%H A340137 Michael De Vlieger, <a href="/A340137/b340137.txt">Table of n, a(n) for n = 1..144</a>
%H A340137 Michael De Vlieger, <a href="/A340137/a340137.png">Annotated color-coded plot</a> (x,y) = (a(n), A002110(j)) highlighting colossally abundant numbers in red. This sequence also can portray many but not all superior highly composite numbers (shown in blue). Terms in A224078 appear in black.
%H A340137 Michael De Vlieger, <a href="/A340137/a340137_1.png">Simple extended color-coded plot</a> (x,y) = (a(n), A002110(m)) showing 1000 terms of A004490 in red.
%e A340137 a(1) = 1 since there are 2 colossally abundant numbers m that are primorials P, i.e., 2 and 6.
%e A340137 a(2) = 2 since 2 colossally abundant numbers m = 2P, i.e., 12 and 60.
%e A340137 a(3) = 4 since 120 = 4*30 is colossally abundant.
%e A340137 a(4) = 12 since 360 and 2520 = 12P, etc.
%e A340137 Table showing products of primorials in the column heading and terms in this sequence in the row headings that appear in A004490 (and in these cases, also A002201, thereby in their intersection, A224078).
%e A340137           2   6   30    210    2310    30030      510510
%e A340137   ------------------------------------------------------
%e A340137     1:    2   6
%e A340137     2:       12   60
%e A340137     4:           120
%e A340137    12:           360   2520
%e A340137    24:                 5040   55440   720720
%e A340137    48:                               1441440
%e A340137   144:                               4324320
%e A340137   720:                              21621600   367567200   ...
%e A340137 Textual plot of numbers at (n,k) where row n = a(n) and column k = A002110(k), marking terms (x) in A224078, (*) only in A004490, or (.) only in A002201.
%e A340137    1: xx
%e A340137    2:  xx
%e A340137    3:   x
%e A340137    4:   xx
%e A340137    5:    xxx
%e A340137    6:      x
%e A340137    7:      x
%e A340137    8:      xxx*
%e A340137    9:        .x**
%e A340137   10:         ..*
%e A340137   11:          .x***
%e A340137   12:           ...xx**
%e A340137   13:               ..x****
%e A340137   14:                     **
%e A340137   15:                 ..   **
%e A340137   16:                  .....***
%e A340137   17:                      ...**********
%e A340137   18:                        .....     ***
%e A340137   19:                            ...     ****
%e A340137   20:                              .....    ********
%e A340137 The largest term in A224078 = 581442729886633902054768000 = a(13)*A002110(17), so appears at (13,17).
%t A340137 Block[{s = Import["https://oeis.org/A073751/b073751.txt", "Data"][[All, -1]], a = 1, b = {}, k, m = 0}, Do[k = a*s[[i]]; If[# > m, m++] &@ PrimePi@ s[[i]]; Set[a, k]; AppendTo[b, k/Product[Prime[j], {j, m}]], {i, 120}]; Union@ b]
%Y A340137 Cf. A002110, A004490, A025487, A073751, A301416, A305056, A307327.
%K A340137 nonn
%O A340137 1,2
%A A340137 _Michael De Vlieger_, Jan 08 2021