This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340137 #8 Jan 12 2021 18:03:39 %S A340137 1,2,4,12,24,48,144,720,1440,10080,30240,60480,302400,3326400,6652800, %T A340137 19958400,259459200,518918400,3632428800,61751289600,1173274502400, %U A340137 3519823507200,17599117536000,35198235072000,809559406656000,1619118813312000,46954445586048000 %N A340137 Numbers k in A305056 such that k*A002110(j) is in A004490. %C A340137 All terms are in A025487, since all terms m in A004490 are products of primorials P in A002110. %C A340137 Let Q = A002110(A001221(m)) be the largest primorial divisor Q | m. The terms in this sequence are the primitive quotients k = m/Q for m in A004490. %H A340137 Michael De Vlieger, <a href="/A340137/b340137.txt">Table of n, a(n) for n = 1..144</a> %H A340137 Michael De Vlieger, <a href="/A340137/a340137.png">Annotated color-coded plot</a> (x,y) = (a(n), A002110(j)) highlighting colossally abundant numbers in red. This sequence also can portray many but not all superior highly composite numbers (shown in blue). Terms in A224078 appear in black. %H A340137 Michael De Vlieger, <a href="/A340137/a340137_1.png">Simple extended color-coded plot</a> (x,y) = (a(n), A002110(m)) showing 1000 terms of A004490 in red. %e A340137 a(1) = 1 since there are 2 colossally abundant numbers m that are primorials P, i.e., 2 and 6. %e A340137 a(2) = 2 since 2 colossally abundant numbers m = 2P, i.e., 12 and 60. %e A340137 a(3) = 4 since 120 = 4*30 is colossally abundant. %e A340137 a(4) = 12 since 360 and 2520 = 12P, etc. %e A340137 Table showing products of primorials in the column heading and terms in this sequence in the row headings that appear in A004490 (and in these cases, also A002201, thereby in their intersection, A224078). %e A340137 2 6 30 210 2310 30030 510510 %e A340137 ------------------------------------------------------ %e A340137 1: 2 6 %e A340137 2: 12 60 %e A340137 4: 120 %e A340137 12: 360 2520 %e A340137 24: 5040 55440 720720 %e A340137 48: 1441440 %e A340137 144: 4324320 %e A340137 720: 21621600 367567200 ... %e A340137 Textual plot of numbers at (n,k) where row n = a(n) and column k = A002110(k), marking terms (x) in A224078, (*) only in A004490, or (.) only in A002201. %e A340137 1: xx %e A340137 2: xx %e A340137 3: x %e A340137 4: xx %e A340137 5: xxx %e A340137 6: x %e A340137 7: x %e A340137 8: xxx* %e A340137 9: .x** %e A340137 10: ..* %e A340137 11: .x*** %e A340137 12: ...xx** %e A340137 13: ..x**** %e A340137 14: ** %e A340137 15: .. ** %e A340137 16: .....*** %e A340137 17: ...********** %e A340137 18: ..... *** %e A340137 19: ... **** %e A340137 20: ..... ******** %e A340137 The largest term in A224078 = 581442729886633902054768000 = a(13)*A002110(17), so appears at (13,17). %t A340137 Block[{s = Import["https://oeis.org/A073751/b073751.txt", "Data"][[All, -1]], a = 1, b = {}, k, m = 0}, Do[k = a*s[[i]]; If[# > m, m++] &@ PrimePi@ s[[i]]; Set[a, k]; AppendTo[b, k/Product[Prime[j], {j, m}]], {i, 120}]; Union@ b] %Y A340137 Cf. A002110, A004490, A025487, A073751, A301416, A305056, A307327. %K A340137 nonn %O A340137 1,2 %A A340137 _Michael De Vlieger_, Jan 08 2021