This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340149 #14 Feb 11 2025 09:32:30 %S A340149 1,1,1,3,1,1,1,9,5,3,1,3,1,5,3,27,1,5,1,9,5,3,1,9,7,1,25,15,1,3,1,81, %T A340149 3,9,15,15,1,11,1,27,1,5,1,9,5,7,1,27,11,21,9,3,1,25,1,45,11,15,1,9,1, %U A340149 9,25,243,3,3,1,27,7,3,1,45,1,5,21,33,15,1,1,81,125,21,1,15,3,23,15,27,1,15,5,21,9,13,33 %N A340149 Odd part of A340147: a(n) = A000265(A247074(A003961(n))). %C A340149 Each term a(n) is a divisor of A340075(n), at n=85 occurs the first proper divisor. %H A340149 Antti Karttunen, <a href="/A340149/b340149.txt">Table of n, a(n) for n = 1..65537</a> %H A340149 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %F A340149 a(n) = A000265(A340147(n)) = A000265(A247074(A003961(n))). %o A340149 (PARI) %o A340149 A000265(n) = (n>>valuation(n,2)); %o A340149 A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; %o A340149 A247074(n) = { my(f=factor(n)); eulerphi(f)/prod(i=1, #f~, gcd(f[i, 1]-1, n-1)); }; \\ From A247074 %o A340149 A340149(n) = A000265(A247074(A003961(n))); %Y A340149 Cf. A000265, A003961, A247074, A340147, A340150 (positions of ones). %Y A340149 Differs from related A340075 for the first time at n=85, where a(85) = 3, while A340075(85) = 9. %K A340149 nonn %O A340149 1,4 %A A340149 _Antti Karttunen_, Dec 30 2020