A340156 Square array read by upward antidiagonals: T(n, k) is the number of n-ary strings of length k containing 00.
1, 1, 3, 1, 5, 8, 1, 7, 21, 19, 1, 9, 40, 79, 43, 1, 11, 65, 205, 281, 94, 1, 13, 96, 421, 991, 963, 201, 1, 15, 133, 751, 2569, 4612, 3217, 423, 1, 17, 176, 1219, 5531, 15085, 20905, 10547, 880, 1, 19, 225, 1849, 10513, 39186, 86241, 92935, 34089, 1815
Offset: 2
Examples
For n = 3 and k = 4, there are 21 strings: {0000, 0001, 0002, 0010, 0011, 0012, 0020, 0021, 0022, 0100, 0200, 1000, 1001, 1002, 1100, 1200, 2000, 2001, 2002, 2100, 2200}. Square table T(n,k): k=2: k=3: k=4: k=5: k=6: k=7: n=2: 1 3 8 19 43 94 n=3: 1 5 21 79 281 963 n=4: 1 7 40 205 991 4612 n=5: 1 9 65 421 2569 15085 n=6: 1 11 96 751 5531 39186 n=7: 1 13 133 1219 10513 87199 n=8: 1 15 176 1849 18271 173608 n=9: 1 17 225 2665 29681 317817
Links
- Robert P. P. McKone, Antidiagonals n = 2..100, flattened
Crossrefs
Programs
-
Mathematica
m[r_] := Normal[With[{p = 1/n}, SparseArray[{Band[{1, 2}] -> p, {i_, 1} /; i <= r -> 1 - p, {r + 1, r + 1} -> 1}]]]; T[n_, k_, r_] := MatrixPower[m[r], k][[1, r + 1]]*n^k; Reverse[Table[T[n, k - n + 2, 2], {k, 2, 11}, {n, 2, k}], 2] // Flatten (* Robert P. P. McKone, Jan 26 2021 *)