This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340166 #23 Jan 05 2021 03:27:25 %S A340166 1,12,17745,2958176256,54090331699622625,107181043200192494332800000, %T A340166 22868509031094388112997259982567521313, %U A340166 523389340935243821042846225254323436248483571433472 %N A340166 a(n) = 4^(2*(n-1)^2) * Product_{1<=i,j<=n-1} (1 - sin(i*Pi/(2*n))^2 * sin(j*Pi/(2*n))^2). %H A340166 Seiichi Manyama, <a href="/A340166/b340166.txt">Table of n, a(n) for n = 1..30</a> %H A340166 D. E. Knuth, <a href="https://arxiv.org/abs/math/9501234">Aztec Diamonds, Checkerboard Graphs, and Spanning Trees</a>, arXiv:math/9501234 [math.CO], 1995; J. Alg. Combinatorics 6 (1997), 253-257. %F A340166 a(n) = 4^(2*(n-1)^2) * Product_{1<=i,j<=n-1} (1 - cos(i*Pi/(2*n))^2 * cos(j*Pi/(2*n))^2). %F A340166 a(n) = 4^(2*(n-1)^2) * Product_{1<=i,j<=n-1} (1 - sin(i*Pi/(2*n))^2 * cos(j*Pi/(2*n))^2). %F A340166 a(n) ~ Gamma(1/4) * exp(8*G*n^2/Pi) / (Pi^(3/4) * sqrt(n) * 2^(6*n - 2)), where G is Catalan's constant A006752. - _Vaclav Kotesovec_, Jan 05 2021 %t A340166 Table[4^(2*(n-1)^2) * Product[Product[1 - Sin[i*Pi/(2*n)]^2 * Sin[j*Pi/(2*n)]^2, {i, 1, n-1}], {j, 1, n-1}], {n, 1, 10}] // Round (* _Vaclav Kotesovec_, Dec 31 2020 *) %o A340166 (PARI) default(realprecision, 120); %o A340166 {a(n) = round(4^(2*(n-1)^2)*prod(i=1, n-1, prod(j=1, n-1, 1-(sin(i*Pi/(2*n))*sin(j*Pi/(2*n)))^2)))} %Y A340166 Cf. A007725, A340139, A340167. %K A340166 nonn %O A340166 1,2 %A A340166 _Seiichi Manyama_, Dec 30 2020