cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340175 Number of sets in the geometry determined by the Hausdorff metric at each location between two sets defined by a complete bipartite graph K(6,n) (with n at least 3) missing two edges, where the two removed edges are not incident to the same vertex in the 6-point set but are incident to the same vertex in the other set.

Original entry on oeis.org

20720, 2300576, 187074656, 13292505200, 887383104080, 57504128509376, 3673096729270976, 232977132982939280, 14726467240259960240, 929286203862118743776, 58592152032205560862496, 3692766925932013206557360, 232689626985868508845398800
Offset: 3

Views

Author

Steven Schlicker, Dec 30 2020

Keywords

Comments

Start with a complete bipartite graph K(6,n) with vertex sets A and B where |A| = 6 and |B| is at least 3. We can arrange the points in sets A and B such that h(A,B) = d(a,b) for all a in A and b in B, where h is the Hausdorff metric. The pair [A,B] is a configuration. Then a set C is between A and B at location s if h(A,C) = h(C,B) = h(A,B) and h(A,C) = s. Call a pair ab, where a is in A and b is in B an edge. This sequence provides the number of sets between sets A' and B' at location s in a new configuration [A',B'] obtained from [A,B] by removing two edges, where the two removed edges are not incident to the same point in A but are incident to the same point in B. So this sequence tells the number of sets at each location on the line segment between A' and B'.
Number of {0,1} 6 X n matrices (with n at least 3) with two fixed zero entries in the same column and no zero rows or columns.
Take a complete bipartite graph K(6,n) (with n at least 3) having parts A and B where |A| = 6. This sequence gives the number of edge covers of the graph obtained from this K(6,n) graph after removing two edges, where the two removed edges are not incident to the same vertex in A but are incident to the same vertex in B.

Crossrefs

Polygonal chain sequences A152927, A152928, A152929, A152930, A152931, A152932, A152933, A152934, A152939.
Number of {0,1} n X n matrices with no zero rows or columns A048291.

Programs

  • Mathematica
    A340175[n_] := 15*63^(n-1) - 58*31^(n-1) + 89*15^(n-1) - 68*7^(n-1) + 26*3^(n-1) - 4; Array[A340175, 20, 3] (* or *)
    LinearRecurrence[{120, -4593, 69688, -428787, 978768, -615195}, {20720, 2300576, 187074656, 13292505200, 887383104080, 57504128509376}, 20] (* Paolo Xausa, Jul 22 2024 *)

Formula

a(n) = 15*63^(n-1) - 58*31^(n-1) + 89*15^(n-1) - 68*7^(n-1) + 26*3^(n-1) - 4.
From Alejandro J. Becerra Jr., Feb 12 2021: (Start)
G.f.: -16*x^3*(3075975*x^5 - 4893840*x^4 + 2115207*x^3 - 385781*x^2 + 11614*x - 1295)/((1 - x)*(1 - 3*x)*(1 - 7*x)*(1 - 15*x)*(1 - 31*x)*(1 - 63*x)).
a(n) = 120*a(n-1) - 4593*a(n-2) + 69688*a(n-3) - 428787*a(n-4) + 978768*a(n-5) - 615195*a(n-6). (End)