This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340176 #67 Feb 28 2023 23:47:25 %S A340176 1,1,4,208,121856,772189440,51989627289600,36837279603595907072, %T A340176 273129993621426778551615488,21114078836429317912110529666154496, %U A340176 16975032309392309949804839529585109326888960 %N A340176 Number of spanning trees in the halved Aztec diamond HMD_n. %C A340176 *---* %C A340176 | | %C A340176 *---* *---*---*---* %C A340176 | | | | | | %C A340176 *---* *---*---*---* *---*---*---*---*---* %C A340176 HMD_1 HMD_2 HMD_3 %C A340176 ------------------------------------------------- %C A340176 *---* %C A340176 | | %C A340176 *---*---*---* %C A340176 | | | | %C A340176 *---*---*---*---*---* %C A340176 | | | | | | %C A340176 *---*---*---*---*---*---*---* %C A340176 HMD_4 %H A340176 Seiichi Manyama, <a href="/A340176/b340176.txt">Table of n, a(n) for n = 0..45</a> %H A340176 Mihai Ciucu, <a href="https://arxiv.org/abs/0710.4500">Symmetry classes of spanning trees of Aztec diamonds and perfect matchings of odd squares with a unit hole</a>, arXiv:0710.4500 [math.CO], 2007. See Corollary 3.6. %H A340176 Wikipedia, <a href="https://en.wikipedia.org/wiki/Chebyshev_polynomials">Chebyshev polynomials</a> %H A340176 Wikipedia, <a href="https://en.wikipedia.org/wiki/Resultant">Resultant</a> %F A340176 a(n) = Product_{1<=j<k<=2*n-1 and j+k<=2*n-1} (4 - 4*cos(j*Pi/(2*n))*cos(k*Pi/(2*n))). %F A340176 a(n) = 2^(n-1) * A007726(n) * A334089(n) = sqrt(A007341(n) * A334088(n) / n) for n > 0. %F A340176 a(n) = 4^(n-1) * A340139(n) = 4^((n-1)^2) * Product_{1<=j<k<=n-1} (1 - cos(j*Pi/(2*n))^2 * cos(k*Pi/(2*n))^2) for n > 0. - _Seiichi Manyama_, Jan 02 2021 %F A340176 a(n) ~ sqrt(Gamma(1/4)) * exp(4*G*n^2/Pi) / (Pi^(3/8) * n^(3/4) * 2^(n - 1/4) * (1 + sqrt(2))^n), where G is Catalan's constant A006752. - _Vaclav Kotesovec_, Jan 05 2021 %e A340176 a(2) = 4; %e A340176 * * *---* *---* *---* %e A340176 | | | | | | %e A340176 *---*---*---* *---*---*---* *---*---*---* *---* *---* %o A340176 (PARI) default(realprecision, 120); %o A340176 {a(n) = round(prod(j=1, 2*n-1, prod(k=j+1, 2*n-1-j, 4-4*cos(j*Pi/(2*n))*cos(k*Pi/(2*n)))))} %o A340176 (PARI) {a007341(n) = polresultant(polchebyshev(n-1, 2, x/2), polchebyshev(n-1, 2, (4-x)/2))}; %o A340176 {a334088(n) = sqrtint(polresultant(polchebyshev(2*n, 1, x/2), polchebyshev(2*n, 1, I*x/2)))}; %o A340176 {a(n) = if(n==0, 1, sqrtint(a007341(n)*a334088(n)/n))} %o A340176 (PARI) default(realprecision, 120); %o A340176 {a(n) = if(n==0, 1, round(4^((n-1)^2)*prod(j=1, n-1, prod(k=j+1, n-1, 1-(cos(j*Pi/(2*n))*cos(k*Pi/(2*n)))^2))))} \\ _Seiichi Manyama_, Jan 02 2021 %o A340176 (Python) %o A340176 # Using graphillion %o A340176 from graphillion import GraphSet %o A340176 def make_HMD(n): %o A340176 s = 1 %o A340176 grids = [] %o A340176 for i in range(2 * n, 0, -2): %o A340176 for j in range(i - 2): %o A340176 a, b, c = s + j, s + j + 1, s + i + j %o A340176 grids.extend([(a, b), (b, c)]) %o A340176 grids.append((s + i - 2, s + i - 1)) %o A340176 s += i %o A340176 return grids %o A340176 def A340176(n): %o A340176 if n == 0: return 1 %o A340176 universe = make_HMD(n) %o A340176 GraphSet.set_universe(universe) %o A340176 spanning_trees = GraphSet.trees(is_spanning=True) %o A340176 return spanning_trees.len() %o A340176 print([A340176(n) for n in range(7)]) %Y A340176 Cf. A007341, A007725, A007726, A334088, A334089, A340139, A340166, A340185 (halved Aztec diamond HOD_n). %K A340176 nonn %O A340176 0,3 %A A340176 _Seiichi Manyama_, Dec 31 2020