This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340183 #22 Dec 22 2024 15:25:52 %S A340183 1,6,1157625,170875128460147163136, %T A340183 448524809573174705684873233798538664686384705625 %N A340183 a(n) = Product_{1<=j,k,m<=n-1} (4*sin(j*Pi/(2*n))^2 + 4*sin(k*Pi/(2*n))^2 + 4*sin(m*Pi/(2*n))^2). %C A340183 (a(n)/(n*3^(n-1)))^(1/3) is an integer. %F A340183 a(n) = Product_{1<=i,j,k<=n-1} (4*f(i*Pi/(2*n))^2 + 4*g(j*Pi/(2*n))^2 + 4*h(k*Pi/(2*n))^2), where f(x), g(x) and h(x) are sin(x) or cos(x). %F A340183 Limit_{n->infinity} a(n)^(1/n^3) = exp(8*A340322/Pi^3). - _Vaclav Kotesovec_, Jan 05 2021 %t A340183 Round[Table[2^((n-1)^3)* Product[3 - Cos[j*Pi/n] - Cos[k*Pi/n] - Cos[m*Pi/n], {j, 1, n-1}, {k, 1, n-1}, {m, 1, n-1}], {n, 1, 5}]] (* _Vaclav Kotesovec_, Jan 04 2021 *) %o A340183 (PARI) default(realprecision, 500); %o A340183 {a(n) = round(prod(j=1, n-1, prod(k=1, n-1, prod(m=1, n-1, 4*sin(j*Pi/(2*n))^2+4*sin(k*Pi/(2*n))^2+4*sin(m*Pi/(2*n))^2))))} %Y A340183 Cf. A007341, A124647, A340181, A340182. %K A340183 nonn %O A340183 1,2 %A A340183 _Seiichi Manyama_, Dec 31 2020