This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340185 #43 Feb 28 2023 23:47:29 %S A340185 1,1,15,2639,5100561,105518291153,23067254643457375, %T A340185 52901008815129395889375,1266973371422697144030728637409, %U A340185 315937379766837559600972497421046382689,818563964325891485548944567913851815851212484079 %N A340185 Number of spanning trees in the halved Aztec diamond HOD_n. %C A340185 * %C A340185 | %C A340185 * *---*---* %C A340185 | | | | %C A340185 * *---*---* *---*---*---*---* %C A340185 | | | | | | | | | %C A340185 *---*---* *---*---*---*---* *---*---*---*---*---*---* %C A340185 HOD_1 HOD_2 HOD_3 %C A340185 ------------------------------------------------------------- %C A340185 * %C A340185 | %C A340185 *---*---* %C A340185 | | | %C A340185 *---*---*---*---* %C A340185 | | | | | %C A340185 *---*---*---*---*---*---* %C A340185 | | | | | | | %C A340185 *---*---*---*---*---*---*---*---* %C A340185 HOD_4 %H A340185 Seiichi Manyama, <a href="/A340185/b340185.txt">Table of n, a(n) for n = 0..40</a> %H A340185 Mihai Ciucu, <a href="https://arxiv.org/abs/0710.4500">Symmetry classes of spanning trees of Aztec diamonds and perfect matchings of odd squares with a unit hole</a>, arXiv:0710.4500 [math.CO], 2007. See Corollary 3.7. %F A340185 a(n) = Product_{1<=j<k<=2*n and j+k<=2*n} (4 - 4*cos(j*Pi/(2*n+1))*cos(k*Pi/(2*n+1))). %F A340185 From _Seiichi Manyama_, Jan 02 2021: (Start) %F A340185 a(n) = 4^((n-1)*n) * Product_{1<=j<k<=n} (1 - cos(j*Pi/(2*n+1))^2 * cos(k*Pi/(2*n+1))^2). %F A340185 a(n) = A340052(n) * A065072(n) = (1/2^n) * sqrt(A127605(n) * A004003(n) / (2*n+1)). (End) %F A340185 a(n) ~ sqrt(Gamma(1/4)) * exp(G*(2*n+1)^2/Pi) / (Pi^(3/8) * n^(3/4) * 2^(n + 3/4) * (1 + sqrt(2))^(n + 1/2)), where G is Catalan's constant A006752. - _Vaclav Kotesovec_, Jan 03 2021 %t A340185 Table[4^((n-1)*n) * Product[Product[(1 - Cos[j*Pi/(2*n + 1)]^2*Cos[k*Pi/(2*n + 1)]^2), {k, j+1, n}], {j, 1, n}], {n, 0, 12}] // Round (* _Vaclav Kotesovec_, Jan 03 2021 *) %o A340185 (PARI) default(realprecision, 120); %o A340185 {a(n) = round(prod(j=1, 2*n, prod(k=j+1, 2*n-j, 4-4*cos(j*Pi/(2*n+1))*cos(k*Pi/(2*n+1)))))} %o A340185 (PARI) default(realprecision, 120); %o A340185 {a(n) = round(4^((n-1)*n)*prod(j=1, n, prod(k=j+1, n, 1-(cos(j*Pi/(2*n+1))*cos(k*Pi/(2*n+1)))^2)))} \\ _Seiichi Manyama_, Jan 02 2021 %o A340185 (Python) %o A340185 # Using graphillion %o A340185 from graphillion import GraphSet %o A340185 def make_HOD(n): %o A340185 s = 1 %o A340185 grids = [] %o A340185 for i in range(2 * n + 1, 1, -2): %o A340185 for j in range(i - 2): %o A340185 a, b, c = s + j, s + j + 1, s + i + j %o A340185 grids.extend([(a, b), (b, c)]) %o A340185 grids.append((s + i - 2, s + i - 1)) %o A340185 s += i %o A340185 return grids %o A340185 def A340185(n): %o A340185 if n == 0: return 1 %o A340185 universe = make_HOD(n) %o A340185 GraphSet.set_universe(universe) %o A340185 spanning_trees = GraphSet.trees(is_spanning=True) %o A340185 return spanning_trees.len() %o A340185 print([A340185(n) for n in range(7)]) %Y A340185 Cf. A004003, A007725, A007726, A065072, A127605, A340052, A340176 (halved Aztec diamond HMD_n). %K A340185 nonn %O A340185 0,3 %A A340185 _Seiichi Manyama_, Dec 31 2020