A340206 Constant whose decimal expansion is the concatenation of the smallest n-digit square A061432(n), for n = 1, 2, 3, ...
1, 1, 6, 1, 0, 0, 1, 0, 2, 4, 1, 0, 0, 0, 0, 1, 0, 0, 4, 8, 9, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 4, 5, 6, 9, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 4, 1, 2, 9, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 4, 7, 9, 8, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 1, 4, 9, 2, 8, 4, 1, 0, 0, 0, 0
Offset: 0
Examples
The smallest square with 1, 2, 3, 4, ... digits is, respectively, 1, 16 = 4^2, 100 = 10^2, 1024 = 32^2, .... Here we list the digits of these numbers: 1; 1, 6; 1, 0, 0; 1, 0, 2, 4; ... As for the Champernowne and Copeland-Erdős constants, we can consider this as the decimal expansion of the real constant 0.116100102410000100489...
Crossrefs
Programs
-
PARI
concat([digits(ceil(10^((k-1)/2))^2)|k<-[1..14]]) \\ as seq. of digits c(N=20)=sum(k=1,N,.1^(k*(k+1)/2)*ceil(10^((k-1)/2))^2) \\ as constant
Formula
c = 0.11610010241000010048910000001000456910000000010000141291000000000010...
= Sum_{k >= 1} 10^(-k(k+1)/2)*ceiling(10^((k-1)/2))^2
a(-n(n+1)/2) = 1 for all n >= 0; a(k) = 0 for -n(n-1)/2 > k > -n(n+1)/2 with odd n.
Comments