This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340208 #19 Sep 04 2025 21:54:07 %S A340208 1,2,7,1,2,5,1,0,0,0,1,0,6,4,8,1,0,3,8,2,3,1,0,0,0,0,0,0,1,0,0,7,7,6, %T A340208 9,6,1,0,0,5,4,4,6,2,5,1,0,0,0,0,0,0,0,0,0,1,0,0,0,7,8,7,3,8,7,5,1,0, %U A340208 0,0,2,6,5,7,7,2,8,8,1,0,0,0,0,0,0,0,0,0,0,0,0,1 %N A340208 Constant whose decimal expansion is the concatenation of the smallest n-digit cube A061434(n), for n = 1, 2, 3, ... %C A340208 Every third smallest n-digit cube (i.e., for n = 3k + 1, k >= 0) is 10^k, which explains the chunks of (1,0,...,0), cf. formula. %C A340208 The terms of sequence A215692 converge to this sequence of digits, and to this constant, up to powers of 10. %H A340208 Zhuorui He, <a href="/A340208/b340208.txt">Table of n, a(n) for n = 0..11324</a> (first 150 rows) %F A340208 c = 0.12712510001064810382310000001007769610054462510000000001000787387510002657... %F A340208 = Sum_{k >= 1} 10^(-k(k+1)/2)*ceiling(10^((k-1)/3))^2 %F A340208 a(-n(n+1)/2) = 1 for all n >= 2; %F A340208 a(k) = 0 for -3n(3n+1)/2 > k > -(3n+1)(3n+2)/2, n >= 0. %e A340208 The smallest cube with 1, 2, 3, 4, ... digits is, respectively, 1, 27 = 3^3, 125 = 5^3, 1000 = 10^3, .... Here we list the sequence of digits of these numbers: 1; 2, 7; 1, 2, 5; 1, 0, 0, 0; ... %e A340208 This can be considered, as for the Champernowne and Copeland-Erdős constants, as the decimal expansion of a real constant 0.1271251000106481... %e A340208 As a triangle, in which row n contains the decimal expansion of the smallest n-digit cube: %e A340208 1 %e A340208 2 7 %e A340208 1 2 5 %e A340208 1 0 0 0 %e A340208 1 0 6 4 8 %e A340208 1 0 3 8 2 3 %e A340208 1 0 0 0 0 0 0 %e A340208 1 0 0 7 7 6 9 6 %e A340208 ... %o A340208 (PARI) concat([digits(ceil(10^((k-1)/3))^3)|k<-[1..14]]) \\ as seq. of digits %o A340208 c(N=12)=sum(k=1,N,.1^(k*(k+1)/2)*ceil(10^((k-1)/2))^2) \\ as constant %Y A340208 Cf. A061434 (smallest n-digit cube), A215692 (has this as "limit"), A340209 (same with largest n-digit cubes, limit of A340115), A340206 (same for squares, limit of A215689), A340219 (same for primes, limit of A215641), A340221 (same for semiprimes, limit of A215647). %Y A340208 Cf. A033307 (Champernowne constant), A030190 (binary), A001191 (concatenation of all squares), A134724 (cubes), A033308 (primes: Copeland-Erdős constant). %K A340208 nonn,base,cons,tabl,changed %O A340208 0,2 %A A340208 _M. F. Hasler_, Dec 31 2020