A340209 Constant whose decimal expansion is the concatenation of the largest n-digit cube A061435(n), for n = 1, 2, 3, ...
8, 6, 4, 7, 2, 9, 9, 2, 6, 1, 9, 7, 3, 3, 6, 9, 7, 0, 2, 9, 9, 9, 9, 3, 8, 3, 7, 5, 9, 9, 8, 9, 7, 3, 4, 4, 9, 9, 7, 0, 0, 2, 9, 9, 9, 9, 9, 9, 3, 9, 4, 8, 2, 6, 4, 9, 9, 9, 6, 1, 9, 4, 6, 7, 2, 1, 9, 9, 9, 7, 0, 0, 0, 2, 9, 9, 9, 9, 9, 9, 9, 9, 5
Offset: 0
Examples
The largest cube with 1, 2, 3, 4, ... digits is, respectively, 8 = 2^3, 64 = 4^3, 729 = 9^3, 9261 = 21^3, ..., cf. A061435. Here we list the sequence of digits of these numbers: 8; 6, 4; 7, 2, 9; 9, 2, 6, 1; ... This can be considered, as for the Champernowne and Copeland-Erdős constants, as the decimal expansion of a real constant 0.864729926...
Crossrefs
Cf. A061435 (largest n-digit cube), A340115 (has this as "limit"), A340208 (similar, with smallest n-digit cubes, limit of A215692), A340207 (same for squares, limit of A339978), A340220 (same for primes), A340222 (same for semiprimes), A340219 (similar, with smallest primes, limit of A215641), A340221 (similar, with smallest semiprimes, limit of A215647).
Programs
-
PARI
concat([digits(sqrtnint(10^k-1,3)^3)|k<-[1..14]]) \\ as seq. of digits c(N=20)=sum(k=1,N,.1^(k*(k+1)/2)*sqrtnint(10^k-1,3)^3) \\ as constant
Formula
c = 0.86472992619733697029999383759989734499700299999939482649996194672...
= Sum_{k >= 1} 10^(-k(k+1)/2)*floor(10^(k/3)-1)^3
a(-n(n+1)/2) = 9 for all n >= 3;
Comments