A340224 a(n+1) = a(n-a(n)*(a(n)-1)/2) + 1, starting with a(1) = 0.
0, 1, 2, 2, 3, 2, 4, 1, 2, 2, 3, 2, 4, 5, 3, 3, 5, 5, 2, 6, 4, 4, 4, 6, 3, 5, 4, 5, 6, 6, 4, 4, 6, 6, 3, 5, 6, 5, 6, 7, 3, 6, 5, 7, 5, 4, 8, 3, 6, 7, 7, 7, 5, 6, 7, 7, 4, 8, 7, 6, 6, 5, 8, 4, 9, 7, 6, 8, 8, 4, 5, 7, 8, 6, 8, 9, 8, 7, 5, 9, 8, 6, 7, 6, 9, 7, 10, 7, 7, 9, 7, 5, 7, 8, 8
Offset: 1
Keywords
Examples
a(2) = a(1-a(1)*(a(1)-1)/2)+1 = a(1)+1 = 1. a(3) = a(2-a(2)*(a(2)-1)/2)+1 = a(2)+1 = 2. a(4) = a(3-a(3)*(a(3)-1)/2)+1 = a(2)+1 = 2. a(5) = a(4-a(4)*(a(4)-1)/2)+1 = a(3)+1 = 3.
Links
- Rok Cestnik, Term-referencing tree for 500 terms
- Rok Cestnik, Program for plotting the term-referencing tree
Programs
-
Python
a = [0] for n in range(1000): a.append(a[int(n-a[n]*(a[n]-1)/2)]+1)
Formula
a(n) ~ (6*n)^(1/3) (conjectured).
Comments