This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340228 #8 Jan 20 2021 18:50:33 %S A340228 4,11,27,64,149,342,775,1736,3849,8458,18443,39948,86029,184334, %T A340228 393231,835600,1769489,3735570,7864339,16515092,34603029,72351766, %U A340228 150994967,314572824,654311449,1358954522,2818572315,5838471196,12079595549,24964497438,51539607583,106300440608 %N A340228 a(n) is the sum of the lengths of all the segments used to draw a rectangle of height 2^(n-1) and width n divided into 2^(n-1) rectangles of unit height, in turn, divided into rectangles of unit height and lengths corresponding to the parts of the compositions of n. %H A340228 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (6,-13,12,-4). %H A340228 <a href="/index/Com#compositions">Index entries for sequences related to compositions</a>. %F A340228 O.g.f.: x*(4 - 13*x + 13*x^2 - 3*x^3)/(1 - 3*x + 2*x^2)^2. %F A340228 E.g.f.: (exp(2*x)*(3 + 6*x) + 4*x*exp(x) - 3)/4. %F A340228 a(n) = 6*a(n-1) - 13*a(n-2) + 12*a(n-3) - 4*a(n-4) for n > 4. %F A340228 a(n) = n + 3*(n + 1)*2^(n-2). %F A340228 a(n) = A001792(n) + A188626(n). %F A340228 a(n) = A045623(n) + A215149(n). %F A340228 a(n) = A006127(n) + A053220(n). %e A340228 Illustrations for n = 1..4: %e A340228 _ _ _ %e A340228 |_| |_ _| %e A340228 |_|_| %e A340228 a(1) = 4 a(2) = 11 %e A340228 _ _ _ _ _ _ _ %e A340228 |_ _ _| |_ _ _ _| %e A340228 |_ _|_| |_ _ _|_| %e A340228 |_|_ _| |_|_ _ _| %e A340228 |_|_|_| |_ _|_ _| %e A340228 |_ _|_|_| %e A340228 |_|_ _|_| %e A340228 |_|_|_ _| %e A340228 |_|_|_|_| %e A340228 a(3) = 27 a(4) = 64 %t A340228 LinearRecurrence[{6,-13,12,-4},{4,11,27,64},32] %Y A340228 Cf. A000079, A001792, A006127, A011782, A045623, A053220, A188626, A215149, A228525. %Y A340228 Cf. A338969. %K A340228 nonn,easy %O A340228 1,1 %A A340228 _Stefano Spezia_, Jan 01 2021