This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340231 #62 Dec 27 2022 12:02:45 %S A340231 12,45,2021,3132,1456414565,3823938240,6991969920,120395120396, %T A340231 426436426437,902596902597,74780207478021,90902209090221, %U A340231 66713320846671332085,81142640598114264060,84822272598482227260,99002509969900250997,22443387868362244338786837,24905771529642490577152965 %N A340231 Numbers of the form m^2-4 and also equal to some k concatenated with k+1. %C A340231 All the terms have an even number of digits, but there is no term with 6, 8, 16, 18, 22, 24, ... digits. %C A340231 The values of m are A115439, because a(n) = m^2-4 and a(n) = k|k+1 <==> a(n)+4 = m^2 and a(n)+4 = k|k+5 <==> m^2 = k|k+5, where | denotes concatenation. %C A340231 a(3) = 2021 = 43*47 is A143206(6), the product of a cousin prime pair. %C A340231 The next such term is A115439(1062)^2 - 4. - _David A. Corneth_, Jan 02 2021 %e A340231 a(1) = 12 = 4^2-4 = 2*6. %e A340231 a(4) = 3132 = 56^2-4 = 54*58. %t A340231 Select[Table[n 10^IntegerLength[n]+n+1,{n,10^6}],IntegerQ[Sqrt[#+4]]&] (* The program generates the first 10 terms of the sequence. *) (* _Harvey P. Dale_, Dec 27 2022 *) %o A340231 (Python) %o A340231 def agen(): %o A340231 m = 4 %o A340231 while True: %o A340231 tstr = str(m*m-4) %o A340231 k = int(tstr[:len(tstr)//2]) %o A340231 if tstr == str(k) + str(k+1): %o A340231 yield(int(tstr)) %o A340231 m += 1 %o A340231 for an in agen(): print(an, end=", ") # _Michael S. Branicky_, Jan 02 2021 %Y A340231 Intersection of A001704 and A028347. %Y A340231 Cf. A115439, A143206. %K A340231 nonn,base %O A340231 1,1 %A A340231 _Bernard Schott_, Jan 01 2021 %E A340231 a(13)-a(16) from _Michael S. Branicky_, Jan 02 2021 %E A340231 a(17)-a(18) from _David A. Corneth_, Jan 02 2021