cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340242 Square array read by upward antidiagonals: T(n,k) is the number of n-ary strings of length k containing 000.

Original entry on oeis.org

1, 1, 3, 1, 5, 8, 1, 7, 21, 20, 1, 9, 40, 81, 47, 1, 11, 65, 208, 295, 107, 1, 13, 96, 425, 1021, 1037, 238, 1, 15, 133, 756, 2621, 4831, 3555, 520, 1, 17, 176, 1225, 5611, 15569, 22276, 11961, 1121, 1, 19, 225, 1856, 10627, 40091, 90085, 100768, 39667, 2391
Offset: 2

Views

Author

Robert P. P. McKone, Jan 01 2021

Keywords

Examples

			For n = 4 and k = 5, there are 40 strings: {00000, 00001, 00002, 00003, 00010, 00011, 00012, 00013, 00020, 00021, 00022, 00023, 00030, 00031, 00032, 00033, 01000, 02000, 03000, 10000, 10001, 10002, 10003, 11000, 12000, 13000, 20000, 20001, 20002, 20003, 21000, 22000, 23000, 30000, 30001, 30002, 30003, 31000, 32000, 33000}.
Square table T(n,k):
      k=3: k=4:  k=5:   k=6:    k=7:     k=8:
n=2:    1    3     8     20      47      107
n=3:    1    5    21     81     295     1037
n=4:    1    7    40    208    1021     4831
n=5:    1    9    65    425    2621    15569
n=6:    1   11    96    756    5611    40091
n=7:    1   13   133   1225   10627    88717
n=8:    1   15   176   1856   18425   175967
n=9:    1   17   225   2673   29881   321281
		

Crossrefs

Rows: A050231 (n=2), A231430 (n=3).
Columns: A000567 (k=5), A103532 (k=6).
Cf. A340156 (containing 00).
Cf. A341050.

Programs

  • Mathematica
    m[r_] := Normal[With[{p = 1/n}, SparseArray[{Band[{1, 2}] -> p, {i_, 1} /; i <= r -> 1 - p, {r + 1, r + 1} -> 1}]]];
    T[n_, k_, r_] := MatrixPower[m[r], k][[1, r + 1]]*n^k;
    Reverse[Table[T[n, k - n + 3, 3], {k, 2, 11}, {n, 2, k}], 2] // Flatten
  • PARI
    my(x2='x^2+'x+1); T(n,k) = n^k - polcoeff(lift(x2*Mod('x, 'x^3-(n-1)*x2)^k), 2); \\ Kevin Ryde, Jan 02 2021

Formula

m(3) = [1 - 1/n, 1/n, 0, 0; 1 - 1/n, 0, 1/n, 0; 1 - 1/n, 0, 0, 1/n; 0, 0, 0, 1], is the probability/transition matrix for three consecutive "0" -> "containing 000".