This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340243 #35 Jun 15 2022 10:49:07 %S A340243 2,6,30,189,1350,10395,58046625,1403325,21709437750,2292899734125, %T A340243 80596287646875,640374140030625,8779111824511153125, %U A340243 443779279041223125,20913098524817639765625,195202717402382161174828125,2015813566807172297008593750,367589532770719654160390625 %N A340243 a(n) = denominator((2*n-1)*zeta(2*n)/Pi^(2*n)). %C A340243 For numerators a(n+1) see A046988. %F A340243 a(n) = denominator((2*n-1)*2^(2*n-1)*Bernoulli(2*n)/(2*n)!). - _Peter Luschny_, Jan 12 2021 %e A340243 1/2, 1/6, 1/30, 1/189, 1/1350, 1/10395, 691/58046625, 2/1403325, 3617/21709437750, 43867/2292899734125, ... %p A340243 a := n -> denom((2*n-1)*Zeta(2*n)/Pi^(2*n)); %p A340243 seq(a(n), n=0..17); # _Peter Luschny_, Jan 12 2021 %t A340243 Denominator[Table[(2 n - 1)*Zeta[2 n]/Pi^(2 n), {n, 0, 16}]] %o A340243 (PARI) a(n) = denominator((2*n-1)*2^(2*n-1)*bernfrac(2*n)/(2*n)!); \\ _Michel Marcus_, Jun 15 2022 %Y A340243 Cf. A002432, A027642, A046988, A176289, A164555. %K A340243 nonn,frac %O A340243 0,1 %A A340243 _Artur Jasinski_, Jan 01 2021