This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340261 #10 Jan 03 2021 04:34:36 %S A340261 0,0,0,0,1,1,0,0,1,1,0,1,2,3,3,0,0,0,1,2,2,0,1,2,3,4,5,5,0,0,1,1,2,3, %T A340261 4,4,0,1,1,2,3,4,5,6,6,0,0,1,2,2,3,4,5,6,6,0,1,2,3,4,5,6,7,8,9,9,0,0, %U A340261 0,0,1,1,2,3,4,5,6,6,0,1,2,3,4,5,6,7,8,9,10,11,11 %N A340261 T(n, k) is the number of integers that are less than or equal to k that do not divide n. Triangle read by rows, for 0 <= k <= n. %F A340261 T(n, k) = Sum_{j=1..k} [n mod j <> 0], where [ ] are the Iverson brackets. %F A340261 T(n, k) = card({j : j = 1..k} \ divisors(n)). %e A340261 Table starts: %e A340261 [1] 0; %e A340261 [2] 0, 0; %e A340261 [3] 0, 1, 1; %e A340261 [4] 0, 0, 1, 1; %e A340261 [5] 0, 1, 2, 3, 3; %e A340261 [6] 0, 0, 0, 1, 2, 2; %e A340261 [7] 0, 1, 2, 3, 4, 5, 5; %e A340261 [8] 0, 0, 1, 1, 2, 3, 4, 4; %e A340261 [9] 0, 1, 1, 2, 3, 4, 5, 6, 6; %e A340261 [10] 0, 0, 1, 2, 2, 3, 4, 5, 6, 6; %p A340261 IversonBrackets := expr -> subs(true=1, false=0, evalb(expr)): %p A340261 T := (n, k) -> add(IversonBrackets(irem(n, j) <> 0), j = 1..k): %p A340261 # Alternative: %p A340261 T := (n, k) -> nops({seq(j, j = 1..k)} minus numtheory:-divisors(n)): %p A340261 for n from 1 to 19 do seq(T(n, k), k = 1..n) od; %Y A340261 T(n, n) = n - tau(n) = A049820(n). %Y A340261 T(2*n, n) = n + 1 - tau(2*n) = A234306(n). %Y A340261 Cf. A000005, A051731, A243987, A340260. %K A340261 nonn,tabl %O A340261 1,13 %A A340261 _Peter Luschny_, Jan 02 2021