This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340268 #43 Feb 16 2021 13:33:41 %S A340268 4,6,8,9,10,12,14,15,16,18,20,21,22,24,25,26,27,28,30,32,33,34,36,38, %T A340268 39,40,42,44,45,46,48,49,50,51,52,54,56,57,58,60,62,63,64,65,66,68,69, %U A340268 70,72,74,75,76,78,80,81,82,84,85,86,87,88,90,91,92,93,94,96 %N A340268 Composite numbers k>1 such that (s-1) | (d-1) for each d | k, where s = lpf(k) = A020639(k). %C A340268 Not a duplicate of A340058 because the complements A335902 and A340269 differ. - _R. J. Mathar_, Feb 16 2021 %p A340268 with(numtheory): %p A340268 q:= n-> (f-> andmap(d-> irem(d-1, f)=0, divisors(n)))(min(factorset(n))-1): %p A340268 select(not isprime and q, [$2..96])[]; # _Alois P. Heinz_, Feb 12 2021 %t A340268 Select[Range[2, 96], Function[{n, s}, And[! PrimeQ@ n, AllTrue[Divisors[n] - 1, Mod[#, s] == 0 &]]] @@ {#, FactorInteger[#][[1, 1]] - 1} &] (* _Michael De Vlieger_, Feb 12 2021 *) %o A340268 (MATLAB) %o A340268 n=300; % gives all terms of the sequence not exceeding n %o A340268 A=[]; %o A340268 for i=2:n %o A340268 lpf=2; %o A340268 while mod(i,lpf)~=0 %o A340268 lpf=lpf+1; %o A340268 end %o A340268 for d=1:floor(i/2) %o A340268 if mod(i,d)==0 && mod(d-1,lpf-1)~=0 %o A340268 break %o A340268 elseif d==floor(i/2) %o A340268 A=[A i]; %o A340268 end %o A340268 end %o A340268 end %o A340268 (PARI) isok(c) = if ((c>1) && !isprime(c), my(f=factor(c)[,1]); for (k=1, #f~, if ((f[k]-1) % (f[1]-1), return(0))); return(1)); \\ _Michel Marcus_, Jan 03 2021 %Y A340268 Cf. A000010, A000961, A020639, A340058, A335902, A340269 (complement). %Y A340268 Contains all composite terms of at least A003586, A003591, A003592, A003593, A003596. %K A340268 nonn %O A340268 1,1 %A A340268 _Maxim Karimov_, Jan 02 2021