cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340292 a(n) = 4^(2*n^2) * Product_{1<=j,k<=n} (1 - sin(j*Pi/(2*n+1))^2 * sin(k*Pi/(2*n+1))^2).

This page as a plain text file.
%I A340292 #19 Feb 28 2023 23:47:37
%S A340292 1,7,4961,371647151,2952717950351617,2489597262406609716450871,
%T A340292 222812636926792555435326125877303201,
%U A340292 2116840405025957772469476908228785308996001314527,2134958300495920487325052422663717579194357002081033470045923329
%N A340292 a(n) = 4^(2*n^2) * Product_{1<=j,k<=n} (1 - sin(j*Pi/(2*n+1))^2 * sin(k*Pi/(2*n+1))^2).
%F A340292 a(n) = A002315(n) * A340293(n)^2.
%F A340292 a(n) ~ exp(2*G*(2*n+1)^2/Pi) / 2^(4*n + 3/4), where G is Catalan's constant A006752. - _Vaclav Kotesovec_, Jan 04 2021
%t A340292 Table[2^(4*n^2) * Product[Product[1 - Sin[j*Pi/(2*n + 1)]^2 * Sin[k*Pi/(2*n + 1)]^2, {k, 1, n}], {j, 1, n}], {n, 0, 10}] // Round (* _Vaclav Kotesovec_, Jan 04 2021 *)
%o A340292 (PARI) default(realprecision, 120);
%o A340292 {a(n) = round(4^(2*n^2)*prod(j=1, n, prod(k=1, n, 1-(sin(j*Pi/(2*n+1))*sin(k*Pi/(2*n+1)))^2)))}
%Y A340292 Cf. A002315, A340166, A340291, A340293, A340295.
%K A340292 nonn
%O A340292 0,2
%A A340292 _Seiichi Manyama_, Jan 03 2021