This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340295 #20 Jan 04 2021 04:49:04 %S A340295 1,13,18281,2732887529,43384923739812577,73125714588602035608260981, %T A340295 13085551252412040683513520733767180041, %U A340295 248596840858215958581954513797323868183183928594833 %N A340295 a(n) = 4^(2*n^2) * Product_{1<=j,k<=n} (1 - sin(j*Pi/(2*n+1))^2 * cos(k*Pi/(2*n+1))^2). %C A340295 a(n)/A001570(n+1) is an integer. %H A340295 Wikipedia, <a href="https://en.wikipedia.org/wiki/Chebyshev_polynomials">Chebyshev polynomials</a> %H A340295 Wikipedia, <a href="https://en.wikipedia.org/wiki/Resultant">Resultant</a> %F A340295 a(n) = A334089(2*n+1). %F A340295 a(n) ~ exp(2*G*(2*n+1)^2/Pi) / 2^(3*n + 7/8), where G is Catalan's constant A006752. - _Vaclav Kotesovec_, Jan 04 2021 %t A340295 Table[Resultant[ChebyshevT[4*n+2, x/2], ChebyshevT[4*n+2, I*x/2], x]^(1/4) / 2^n, {n, 0, 10}] (* _Vaclav Kotesovec_, Jan 04 2021 *) %o A340295 (PARI) default(realprecision, 120); %o A340295 {a(n) = round(4^(2*n^2)*prod(j=1, n, prod(k=1, n, 1-(sin(j*Pi/(2*n+1))*cos(k*Pi/(2*n+1)))^2)))} %o A340295 (PARI) {a(n) = sqrtint(sqrtint(polresultant(polchebyshev(4*n+2, 1, x/2), polchebyshev(4*n+2, 1, I*x/2))))/2^n} %Y A340295 Cf. A001570, A334089, A340166, A340291, A340292. %K A340295 nonn %O A340295 0,2 %A A340295 _Seiichi Manyama_, Jan 03 2021