cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340309 Number of ordered pairs of vertices which have two different shortest paths between them in the n-Hanoi graph (3 pegs, n discs).

This page as a plain text file.
%I A340309 #12 Jan 14 2021 02:36:07
%S A340309 0,6,48,282,1476,7302,35016,164850,767340,3546366,16315248,74837802,
%T A340309 342621396,1566620022,7157423256,32682574050,149184117180,
%U A340309 680813718126,3106475197248,14173073072922,64659388538916,294971717255142,1345602571317096,6138257708432850
%N A340309 Number of ordered pairs of vertices which have two different shortest paths between them in the n-Hanoi graph (3 pegs, n discs).
%C A340309 Vertices of the Hanoi graph are configurations of discs on pegs in the Towers of Hanoi puzzle.  Edges are a move of a disc from one peg to another.
%C A340309 The shortest path between a pair of vertices u,v may be unique, or there may be 2 different paths.  a(n) is the number of vertex pairs with 2 shortest paths.  Pairs are ordered, so both u,v and v,u are counted.
%C A340309 For a given vertex u, Hinz et al. characterize and count the destinations v which have 2 shortest paths.  Their total x_n is the number of vertex pairs in the graph of n+1 discs.  The present sequence is for n discs so a(n) = x_{n-1}.
%H A340309 Kevin Ryde, <a href="/A340309/b340309.txt">Table of n, a(n) for n = 1..500</a>
%H A340309 Andreas M. Hinz, Sandi Klavžar, Uroš Milutinović, Daniele Parisse, and Ciril Petr, <a href="https://doi.org/10.1016/j.ejc.2004.04.009">Metric Properties of the Tower of Hanoi Graphs and Stern's Diatomic Sequence</a>, European Journal of Combinatorics, volume 26, 2005, pages 693-708.  See proposition 3.9.
%H A340309 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (8,-17,6).
%H A340309 <a href="/index/To#Hanoi">Index entries for sequences related to Towers of Hanoi</a>
%F A340309 With P = (5 + sqrt(17))/2 = A082486, and M = (5 - sqrt(17))/2:
%F A340309 a(n) = (3/(4*sqrt(17)))*( (sqrt(17)+1)*P^n - 2*sqrt(17)*3^n + (sqrt(17)-1)*M^n ). [Hinz et al.]
%F A340309 a(n) = (6/sqrt(17)) * Sum_{k=0..n-1} 3^k * (P^(n-1-k) - M^(n-1-k)) [Hinz et al.].
%F A340309 a(n) = 3*a(n-1) + 6*A107839(n-2), paths within and between subgraphs n-1.
%F A340309 a(n) = 8*a(n-1) - 17*a(n-2) + 6*a(n-3).
%F A340309 a(n) = (A052984(n) - 3^n)*3/2.
%F A340309 G.f.: 6*x^2/((1 - 5*x + 2*x^2)*(1 - 3*x)).
%F A340309 G.f.: (3/2 - 3*x)/(1 - 5*x + 2*x^2) - (3/2)/(1 - 3*x).
%e A340309 For n=3 discs, the Hanoi graph is
%e A340309                 *           \
%e A340309                / \          | top
%e A340309               A---*         | subgraph,
%e A340309              /     \        | of n-1 = 2
%e A340309             B       *       | discs
%e A340309            / \     / \      |
%e A340309           C---D---E---*     /
%e A340309          /             \          two shortest
%e A340309         *               *           paths for
%e A340309        / \             / \           A to S
%e A340309       *---*           *---*          B to T
%e A340309      /     \         /     \         C to R
%e A340309     *       *       R       *        C to U
%e A340309    / \     / \     / \     / \       D to S
%e A340309   *---*---*---*---S---T---U---*
%e A340309 Going from the top subgraph down to the bottom right subgraph, there are 5 vertex pairs with two shortest paths.  C to R goes around the middle 12-cycle either right or left, and likewise D to S.  The other pairs also go each way around the middle.  There are 6 ordered pairs of n-1 subgraphs repeating these 5 pairs.
%e A340309 Within the n-1 = 2 disc top subgraph, A and E are in separate n-2 subgraphs (unit triangles) and they are the only pair with two shortest paths.  Again 6 combinations of these, and in 3 subgraphs.  Total a(3) = 6*5 + 6*3*1 = 48.
%o A340309 (PARI) my(p=Mod('x, 'x^2-5*'x+2)); a(n) = (vecsum(Vec(lift(p^(n+1)))) - 3^n)*3/2;
%Y A340309 Cf. A052984, A107839.
%K A340309 nonn,easy
%O A340309 1,2
%A A340309 _Kevin Ryde_, Jan 04 2021