This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340321 #11 Jan 07 2021 10:31:24 %S A340321 0,0,1,1,0,0,1,1,2,2,3,3,4,4,3,3,2,2,1,1,0,0,1,1,0,0,1,1,2,2,3,3,4,4, %T A340321 3,3,4,4,5,5,6,6,5,5,6,6,7,7,8,8,9,9,10,10,9,9,10,10,11,11,12,12,13, %U A340321 13,12,12,11,11,10,10,9,9,10,10,9,9,8,8,7,7,6 %N A340321 a(n) is the Y-coordinate of the n-th point of a variant of the quadratic Koch curve. Sequence A340320 gives X-coordinates. %C A340321 The curve is built by successively applying the following substitution to an initial vector (1, 0) (the two vertical copies are horizontally flipped): %C A340321 * %C A340321 .------>. %C A340321 ^ | %C A340321 |* *| %C A340321 * | v * %C A340321 .------>. .------>. %C A340321 The quadratic Koch curve is built without horizontal flip. %H A340321 Rémy Sigrist, <a href="/A340321/b340321.txt">Table of n, a(n) for n = 0..3125</a> %H A340321 Robert Ferréol (MathCurve), <a href="https://www.mathcurve.com/fractals/kochquadratique/kochquadratique.shtml">Courbe de Koch quadratique</a> [in French] %H A340321 Rémy Sigrist, <a href="/A340321/a340321.gp.txt">PARI program for A340321</a> %H A340321 <a href="/index/Con#coordinates_2D_curves">Index entries for sequences related to coordinates of 2D curves</a> %F A340321 a(5^k-m) = a(m) for any k >= 0 and m = 0..5^k. %e A340321 The curve starts as follows: %e A340321 +---+ %e A340321 |12 |13 %e A340321 | | %e A340321 +---+ +---+ %e A340321 |10 11 14 |15 %e A340321 | | %e A340321 +---+ +---+ %e A340321 9 |8 |17 16 %e A340321 | | %e A340321 +---+ +---+ +---+ +---+ %e A340321 |2 |3 |6 7 18 |19 |22 |23 %e A340321 | | | | | | %e A340321 +---+ +---+ +---+ +---+ %e A340321 0 1 4 5 20 21 24 25 %e A340321 - so a(0) = a(1) = a(4) = a(5) = a(20) = a(21) = a(24) = a(25) = 0, %e A340321 a(8) = a(9) = a(16) = a(17) = 2. %o A340321 (PARI) See Links section. %Y A340321 See A332250 and A340328 for similar sequences. %Y A340321 Cf. A340320 (X-coordinates). %K A340321 nonn %O A340321 0,9 %A A340321 _Rémy Sigrist_, Jan 04 2021