A337836 a(n) is the smallest base of the form 8 + 10*k which is characterized by a convergence speed of n, where A317905(n) represents the convergence speed of m^^m.
8, 18, 68, 2318, 7318, 1068, 32318, 501068, 7532318, 3626068, 23157318, 120813568, 3538782318, 1097376068, 110960657318, 49925501068, 1880980188568, 355101282318, 53760863001068, 15613890344818, 587818480188568, 2495167113001068
Offset: 1
Examples
For n = 3, a(3) = 68 is characterized by a convergence speed of 3, and it is the smallest base such that V(a) = 3. Moreover, 5^3 has to divide a(3) (i.e., a(3)^2+1 = 4625 = 5^3*37 is a multiple of 5^3).
References
- Marco Ripà, La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011. ISBN 978-88-6178-789-6
Links
- Marco Ripà, On the constant congruence speed of tetration, Notes on Number Theory and Discrete Mathematics, 2020, 26(3), 245-260.
- Marco Ripà, The congruence speed formula, Notes on Number Theory and Discrete Mathematics, 2021, 27(4), 43-61.
- Marco Ripà, Number of stable digits of any tetration, ResearchGate, December 2021.
Formula
a(n) = g(n) + u(n), where g(n) = (-2^5^n (mod 10^n)) (mod 2*5^n) and where u(n) = [0 iff g(n) <> g(n + 1); 2*5^n iff g(n) = g(n + 1)].
a(n) = 5-adic valuation of a(n)^2 + 1. - Marco Ripà, Dec 31 2021
Comments