This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340385 #6 Jan 09 2021 08:37:32 %S A340385 1,0,2,0,3,1,6,3,10,7,18,15,30,28,51,50,82,87,134,145,211,235,331,375, %T A340385 510,586,779,901,1172,1366,1750,2045,2581,3026,3778,4433,5476,6430, %U A340385 7878,9246,11240,13189,15931,18670,22417,26242,31349,36646,43567,50854 %N A340385 Number of integer partitions of n into an odd number of parts, the greatest of which is odd. %e A340385 The a(3) = 2 through a(10) = 7 partitions: %e A340385 3 5 321 7 332 9 532 %e A340385 111 311 322 521 333 541 %e A340385 11111 331 32111 522 721 %e A340385 511 531 32221 %e A340385 31111 711 33211 %e A340385 1111111 32211 52111 %e A340385 33111 3211111 %e A340385 51111 %e A340385 3111111 %e A340385 111111111 %t A340385 Table[Length[Select[IntegerPartitions[n],OddQ[Length[#]*Max[#]]&]],{n,30}] %Y A340385 Partitions of odd length are counted by A027193, ranked by A026424. %Y A340385 Partitions with odd maximum are counted by A027193, ranked by A244991. %Y A340385 The Heinz numbers of these partitions are given by A340386. %Y A340385 Other cases of odd length: %Y A340385 - A024429 counts set partitions of odd length. %Y A340385 - A067659 counts strict partitions of odd length. %Y A340385 - A089677 counts ordered set partitions of odd length. %Y A340385 - A166444 counts compositions of odd length. %Y A340385 - A174726 counts ordered factorizations of odd length. %Y A340385 - A332304 counts strict compositions of odd length. %Y A340385 - A339890 counts factorizations of odd length. %Y A340385 A000009 counts partitions into odd parts, ranked by A066208. %Y A340385 A026804 counts partitions whose least part is odd. %Y A340385 A058695 counts partitions of odd numbers, ranked by A300063. %Y A340385 A072233 counts partitions by sum and length. %Y A340385 A101707 counts partitions with odd rank. %Y A340385 A160786 counts odd-length partitions of odd numbers, ranked by A300272. %Y A340385 A340101 counts factorizations into odd factors. %Y A340385 A340102 counts odd-length factorizations into odd factors. %Y A340385 Cf. A000700, A027187, A078408, A174725, A236914. %K A340385 nonn %O A340385 1,3 %A A340385 _Gus Wiseman_, Jan 08 2021